/* Copyright 2009-2016 David Hadka * * This file is part of the MOEA Framework. * * The MOEA Framework is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * The MOEA Framework is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public * License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with the MOEA Framework. If not, see <http://www.gnu.org/licenses/>. */ package org.moeaframework.problem.CDTLZ; import org.junit.Assert; import org.junit.Ignore; import org.junit.Test; import org.moeaframework.Executor; import org.moeaframework.TestThresholds; import org.moeaframework.core.NondominatedPopulation; import org.moeaframework.core.Solution; import org.moeaframework.core.variable.EncodingUtils; import org.moeaframework.problem.DTLZ.DTLZ2; /** * Tests the {@link C2_DTLZ2} class. */ public class C2_DTLZ2Test { /** * Visual test of the Pareto front. Copy the output and generate a plot, * such as with R, and compare against the figures in Jain and Deb (2014): * <pre> * library(rgl) * x = matrix(c(<paste text>), ncol=3, byrow=T) * plot3d(x) * </pre> */ @Test @Ignore("skip visual tests") public void visualTest() { NondominatedPopulation result = new Executor() .withProblemClass(C2_DTLZ2.class, 3) .withAlgorithm("NSGAIII") .withMaxEvaluations(100000) .run(); for (Solution solution : result) { if (!solution.violatesConstraints()) { System.out.format("%.4f, %.4f, %.4f,%n", solution.getObjective(0), solution.getObjective(1), solution.getObjective(2)); } } } @Test public void test() { test(2, 0.4); test(3, 0.4); test(5, 0.5); test(8, 0.5); test(10, 0.5); test(15, 0.5); } /** * Only a subset of optimal solutions from the DTLZ2 problem should be * feasible. * * @param numberOfObjectives the number of objectives */ public void test(int numberOfObjectives, double r) { C2_DTLZ2 problem = new C2_DTLZ2(numberOfObjectives); DTLZ2 originalProblem = new DTLZ2(numberOfObjectives); for (int i = 0; i <TestThresholds.SAMPLES; i++) { Solution originalSlution = originalProblem.generate(); Solution solution = problem.newSolution(); EncodingUtils.setReal(solution, EncodingUtils.getReal(originalSlution)); problem.evaluate(solution); // compute the minimum distance from the solution to either // 1) the M corner solutions, e.g. (1, 0, ..., 0) // 2) the center, e.g., (1/sqrt(M), ..., 1/sqrt(M)) double minDistance = Double.POSITIVE_INFINITY; for (int j = 0; j < numberOfObjectives; j++) { double distance = Math.pow(solution.getObjective(j)-1.0, 2.0); for (int k = 0; k < numberOfObjectives; k++) { if (k != j) { distance += Math.pow(solution.getObjective(k), 2.0); } } minDistance = Math.min(minDistance, distance); } double distance = 0.0; for (int j = 0; j < numberOfObjectives; j++) { distance += Math.pow(solution.getObjective(j) - 1 / Math.sqrt(numberOfObjectives), 2.0); } minDistance = Math.min(minDistance, distance); if (minDistance < Math.pow(r, 2.0)) { Assert.assertFalse(solution.violatesConstraints()); } else { Assert.assertTrue(solution.violatesConstraints()); } } } }