/* Copyright 2009-2016 David Hadka
*
* This file is part of the MOEA Framework.
*
* The MOEA Framework is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* The MOEA Framework is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with the MOEA Framework. If not, see <http://www.gnu.org/licenses/>.
*/
package org.moeaframework.problem.CDTLZ;
import org.junit.Assert;
import org.junit.Ignore;
import org.junit.Test;
import org.moeaframework.Executor;
import org.moeaframework.TestThresholds;
import org.moeaframework.core.NondominatedPopulation;
import org.moeaframework.core.Solution;
import org.moeaframework.core.variable.EncodingUtils;
import org.moeaframework.problem.DTLZ.DTLZ2;
/**
* Tests the {@link C2_DTLZ2} class.
*/
public class C2_DTLZ2Test {
/**
* Visual test of the Pareto front. Copy the output and generate a plot,
* such as with R, and compare against the figures in Jain and Deb (2014):
* <pre>
* library(rgl)
* x = matrix(c(<paste text>), ncol=3, byrow=T)
* plot3d(x)
* </pre>
*/
@Test
@Ignore("skip visual tests")
public void visualTest() {
NondominatedPopulation result = new Executor()
.withProblemClass(C2_DTLZ2.class, 3)
.withAlgorithm("NSGAIII")
.withMaxEvaluations(100000)
.run();
for (Solution solution : result) {
if (!solution.violatesConstraints()) {
System.out.format("%.4f, %.4f, %.4f,%n",
solution.getObjective(0),
solution.getObjective(1),
solution.getObjective(2));
}
}
}
@Test
public void test() {
test(2, 0.4);
test(3, 0.4);
test(5, 0.5);
test(8, 0.5);
test(10, 0.5);
test(15, 0.5);
}
/**
* Only a subset of optimal solutions from the DTLZ2 problem should be
* feasible.
*
* @param numberOfObjectives the number of objectives
*/
public void test(int numberOfObjectives, double r) {
C2_DTLZ2 problem = new C2_DTLZ2(numberOfObjectives);
DTLZ2 originalProblem = new DTLZ2(numberOfObjectives);
for (int i = 0; i <TestThresholds.SAMPLES; i++) {
Solution originalSlution = originalProblem.generate();
Solution solution = problem.newSolution();
EncodingUtils.setReal(solution,
EncodingUtils.getReal(originalSlution));
problem.evaluate(solution);
// compute the minimum distance from the solution to either
// 1) the M corner solutions, e.g. (1, 0, ..., 0)
// 2) the center, e.g., (1/sqrt(M), ..., 1/sqrt(M))
double minDistance = Double.POSITIVE_INFINITY;
for (int j = 0; j < numberOfObjectives; j++) {
double distance = Math.pow(solution.getObjective(j)-1.0, 2.0);
for (int k = 0; k < numberOfObjectives; k++) {
if (k != j) {
distance += Math.pow(solution.getObjective(k), 2.0);
}
}
minDistance = Math.min(minDistance, distance);
}
double distance = 0.0;
for (int j = 0; j < numberOfObjectives; j++) {
distance += Math.pow(solution.getObjective(j) -
1 / Math.sqrt(numberOfObjectives), 2.0);
}
minDistance = Math.min(minDistance, distance);
if (minDistance < Math.pow(r, 2.0)) {
Assert.assertFalse(solution.violatesConstraints());
} else {
Assert.assertTrue(solution.violatesConstraints());
}
}
}
}