/* Copyright 2009-2016 David Hadka
*
* This file is part of the MOEA Framework.
*
* The MOEA Framework is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* The MOEA Framework is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with the MOEA Framework. If not, see <http://www.gnu.org/licenses/>.
*/
package org.moeaframework.algorithm.single;
import org.moeaframework.algorithm.AbstractEvolutionaryAlgorithm;
import org.moeaframework.core.Initialization;
import org.moeaframework.core.NondominatedPopulation;
import org.moeaframework.core.Population;
import org.moeaframework.core.Problem;
import org.moeaframework.core.Solution;
import org.moeaframework.core.comparator.DominanceComparator;
import org.moeaframework.core.operator.real.DifferentialEvolutionSelection;
import org.moeaframework.core.operator.real.DifferentialEvolutionVariation;
/**
* Single-objective differential evolution (DE) algorithm.
* <p>
* References:
* <ol>
* <li>Rainer Storn and Kenneth Price. "Differential Evolution - A Simple and
* Efficient Heuristic for Global Optimization over Continuous Spaces."
* Journal of Global Optimization, 11(4):341-359, 1997.
* </ol>
*/
public class DifferentialEvolution extends AbstractEvolutionaryAlgorithm {
/**
* The aggregate objective comparator.
*/
private final AggregateObjectiveComparator comparator;
/**
* The differential evolution selection operator.
*/
private final DifferentialEvolutionSelection selection;
/**
* The differential evolution variation operator.
*/
private final DifferentialEvolutionVariation variation;
/**
* Constructs a new instance of the single-objective differential evolution
* (DE) algorithm.
*
* @param problem the problem
* @param comparator the aggregate objective comparator
* @param initialization the initialization method
* @param selection the differential evolution selection operator
* @param variation the differential evolution variation operator
*/
public DifferentialEvolution(Problem problem,
AggregateObjectiveComparator comparator,
Initialization initialization,
DifferentialEvolutionSelection selection,
DifferentialEvolutionVariation variation) {
super(problem, new Population(), null, initialization);
this.comparator = comparator;
this.selection = selection;
this.variation = variation;
}
@Override
protected void iterate() {
Population population = getPopulation();
Population children = new Population();
//generate children
for (int i = 0; i < population.size(); i++) {
selection.setCurrentIndex(i);
Solution[] parents = selection.select(variation.getArity(),
population);
children.add(variation.evolve(parents)[0]);
}
//evaluate children
evaluateAll(children);
//greedy selection of next population
for (int i = 0; i < population.size(); i++) {
if (((DominanceComparator)comparator).compare(children.get(i), population.get(i)) < 0) {
population.replace(i, children.get(i));
}
}
}
@Override
public NondominatedPopulation getResult() {
NondominatedPopulation result = new NondominatedPopulation(comparator);
result.addAll(getPopulation());
return result;
}
}