/* Copyright 2009-2016 David Hadka * * This file is part of the MOEA Framework. * * The MOEA Framework is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * The MOEA Framework is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public * License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with the MOEA Framework. If not, see <http://www.gnu.org/licenses/>. */ package org.moeaframework.problem.misc; import org.moeaframework.core.Solution; import org.moeaframework.core.variable.RealVariable; import org.moeaframework.problem.AbstractProblem; /** * The Lis problem. * <p> * Properties: * <ul> * <li>Disconnected Pareto set * <li>Disconnected and concave Pareto front * </ul> * <p> * References: * <ol> * <li>Lis, J. and Eiben, A. E. (1996). "A Multi-Sexual Genetic Algorithm for * Multiobjective Optimization." Proceedings of the IEEE International * Conference on Evolutionary Computation, 59-64. * <li>Van Veldhuizen, D. A (1999). "Multiobjective Evolutionary Algorithms: * Classifications, Analyses, and New Innovations." Air Force Institute * of Technology, Ph.D. Thesis, Appendix B. * </ol> */ public class Lis extends AbstractProblem { /** * Constructs the Lis problem. */ public Lis() { super(2, 2); } @Override public void evaluate(Solution solution) { double x = ((RealVariable)solution.getVariable(0)).getValue(); double y = ((RealVariable)solution.getVariable(1)).getValue(); double f1 = Math.pow(Math.pow(x, 2.0) + Math.pow(y, 2.0), 1.0/8.0); double f2 = Math.pow(Math.pow(x-0.5, 2.0) + Math.pow(y-0.5, 2.0), 1.0/4.0); solution.setObjective(0, f1); solution.setObjective(1, f2); } @Override public Solution newSolution() { Solution solution = new Solution(2, 2); solution.setVariable(0, new RealVariable(-5.0, 10.0)); solution.setVariable(1, new RealVariable(-5.0, 10.0)); return solution; } }