/* Copyright 2009-2016 David Hadka * * This file is part of the MOEA Framework. * * The MOEA Framework is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * The MOEA Framework is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public * License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with the MOEA Framework. If not, see <http://www.gnu.org/licenses/>. */ package org.moeaframework.problem.misc; import org.moeaframework.core.Solution; import org.moeaframework.core.variable.RealVariable; import org.moeaframework.problem.AbstractProblem; /** * The Poloni problem. Van Veldhuizen observed a typo in the original paper; * this implementation uses Van Veldhuizen's version of the problem. * <p> * Properties: * <ul> * <li>Disconnected Pareto set * <li>Disconnected and convex Pareto front * <li>Maximization (objectives are negated) * </ul> * <p> * References: * <ol> * <li>Van Veldhuizen, D. A (1999). "Multiobjective Evolutionary Algorithms: * Classifications, Analyses, and New Innovations." Air Force Institute * of Technology, Ph.D. Thesis, Appendix B. * <li>Poloni, C., et al. (1996). "Multiobjective Optimization by GAs: * Application to System and Component Design." Computational Methods in * Applied Sciences '96: Invited Lectures and Special Technological * Sessions of the Third ECCOMAS Computational Fluid Dynamics Conference * and the Second ECCOMAS Conference on Numerical Methods in Engineering, * pp. 258-264. * </ol> */ public class Poloni extends AbstractProblem { /** * Constructs the Poloni problem. */ public Poloni() { super(2, 2); } @Override public void evaluate(Solution solution) { double x = ((RealVariable)solution.getVariable(0)).getValue(); double y = ((RealVariable)solution.getVariable(1)).getValue(); double A1 = 0.5*Math.sin(1.0) - 2.0*Math.cos(1.0) + Math.sin(2.0) - 1.5*Math.cos(2.0); double A2 = 1.5*Math.sin(1.0) - Math.cos(1.0) + 2.0*Math.sin(2.0) - 0.5*Math.cos(2.0); double B1 = 0.5*Math.sin(x) - 2.0*Math.cos(x) + Math.sin(y) - 1.5*Math.cos(y); double B2 = 1.5*Math.sin(x) - Math.cos(x) + 2.0*Math.sin(y) - 0.5*Math.cos(y); double f1 = 1 + Math.pow(A1 - B1, 2.0) + Math.pow(A2 - B2, 2.0); double f2 = Math.pow(x + 3.0, 2.0) + Math.pow(y + 1.0, 2.0); solution.setObjective(0, f1); solution.setObjective(1, f2); } @Override public Solution newSolution() { Solution solution = new Solution(2, 2); solution.setVariable(0, new RealVariable(-Math.PI, Math.PI)); solution.setVariable(1, new RealVariable(-Math.PI, Math.PI)); return solution; } }