/* Copyright 2009-2016 David Hadka
*
* This file is part of the MOEA Framework.
*
* The MOEA Framework is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* The MOEA Framework is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with the MOEA Framework. If not, see <http://www.gnu.org/licenses/>.
*/
package org.moeaframework.problem.misc;
import org.moeaframework.core.Solution;
import org.moeaframework.core.variable.EncodingUtils;
import org.moeaframework.core.variable.RealVariable;
import org.moeaframework.problem.AbstractProblem;
/**
* Tatsuya Okabe's OKA1 test problem. The probability density of points becomes
* more sparse the closer a population gets to the Pareto front.
* <p>
* References:
* <ol>
* <li>Okabe, T., et al. "On Test Functions for Evolutionary Multi-Objective
* Optimization." Parallel Problem Solving from Nature, pp. 792-802, 2004.
* </ol>
*/
public class OKA1 extends AbstractProblem {
/**
* Constructs the OKA1 problem.
*/
public OKA1() {
super(2, 2);
}
@Override
public void evaluate(Solution solution) {
double[] x = EncodingUtils.getReal(solution);
double x1 = Math.cos(Math.PI / 12.0) * x[0] - Math.sin(Math.PI / 12.0)
* x[1];
double x2 = Math.sin(Math.PI / 12.0) * x[0] + Math.cos(Math.PI / 12.0)
* x[1];
solution.setObjective(0, x1);
solution.setObjective(1, Math.sqrt(2.0 * Math.PI)
- Math.sqrt(Math.abs(x1)) + 2.0
* Math.pow(Math.abs(x2 - 3.0 * Math.cos(x1) - 3), 1.0 / 3.0));
}
@Override
public Solution newSolution() {
Solution solution = new Solution(2, 2);
solution.setVariable(0, new RealVariable(
6.0 * Math.sin(Math.PI / 12.0), 6.0 * Math.sin(Math.PI / 12.0)
+ 2.0 * Math.PI * Math.cos(Math.PI / 12.0)));
solution.setVariable(1, new RealVariable(-2.0 * Math.PI
* Math.sin(Math.PI / 12), 6.0 * Math.cos(Math.PI / 12.0)));
return solution;
}
}