/* Copyright 2009-2016 David Hadka * * This file is part of the MOEA Framework. * * The MOEA Framework is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * The MOEA Framework is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public * License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with the MOEA Framework. If not, see <http://www.gnu.org/licenses/>. */ package org.moeaframework.algorithm; import org.moeaframework.core.Initialization; import org.moeaframework.core.Population; import org.moeaframework.core.Problem; import org.moeaframework.core.Solution; import org.moeaframework.core.operator.real.DifferentialEvolutionSelection; import org.moeaframework.core.operator.real.DifferentialEvolutionVariation; /** * Implementation of the Multiple Single Objective Pareto Sampling (MSOPS) * algorithm. This implementation only supports differential evolution. * <p> * References: * <ol> * <li>E. J. Hughes. "Multiple Single Objective Pareto Sampling." 2003 * Congress on Evolutionary Computation, pp. 2678-2684. * <li>Matlab source code available from * <a href="http://code.evanhughes.org/">http://code.evanhughes.org/</a>. * </ol> * * @see MSOPSRankedPopulation */ public class MSOPS extends AbstractEvolutionaryAlgorithm { /** * The selection operator. */ private final DifferentialEvolutionSelection selection; /** * The variation operator. */ private final DifferentialEvolutionVariation variation; /** * Constructs a new instance of the MSOPS algorithm. * * @param problem the problem * @param population the population supporting MSOPS ranking * @param selection the differential evolution selection operator * @param variation the differential evolution variation operator * @param initialization the initialization method */ public MSOPS(Problem problem, MSOPSRankedPopulation population, DifferentialEvolutionSelection selection, DifferentialEvolutionVariation variation, Initialization initialization) { super(problem, population, null, initialization); this.variation = variation; this.selection = selection; } @Override public MSOPSRankedPopulation getPopulation() { return (MSOPSRankedPopulation)super.getPopulation(); } @Override protected void iterate() { MSOPSRankedPopulation population = getPopulation(); Population offspring = new Population(); int populationSize = population.size(); int neighborhoodSize = (int)Math.ceil(populationSize/2.0); for (int i = 0; i < populationSize; i++) { // findNearest(i, ...) always puts the i-th solution at index 0 selection.setCurrentIndex(0); Solution[] parents = selection.select(variation.getArity(), population.findNearest(i, neighborhoodSize)); Solution[] children = variation.evolve(parents); offspring.addAll(children); } evaluateAll(offspring); population.addAll(offspring); population.truncate(populationSize); } }