/** * * Copyright (c) 2005, European Commission project OneLab under contract 034819 (http://www.one-lab.org) * All rights reserved. * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * - Neither the name of the University Catholique de Louvain - UCL * nor the names of its contributors may be used to endorse or * promote products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.hadoop.util.bloom; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import java.util.ArrayList; import java.util.Collection; import java.util.Collections; import java.util.List; import java.util.Random; import org.apache.hadoop.classification.InterfaceAudience; import org.apache.hadoop.classification.InterfaceStability; /** * Implements a <i>retouched Bloom filter</i>, as defined in the CoNEXT 2006 paper. * <p> * It allows the removal of selected false positives at the cost of introducing * random false negatives, and with the benefit of eliminating some random false * positives at the same time. * * <p> * Originally created by * <a href="http://www.one-lab.org">European Commission One-Lab Project 034819</a>. * * @see Filter The general behavior of a filter * @see BloomFilter A Bloom filter * @see RemoveScheme The different selective clearing algorithms * * @see <a href="http://www-rp.lip6.fr/site_npa/site_rp/_publications/740-rbf_cameraready.pdf">Retouched Bloom Filters: Allowing Networked Applications to Trade Off Selected False Positives Against False Negatives</a> */ @InterfaceAudience.Public @InterfaceStability.Stable public final class RetouchedBloomFilter extends BloomFilter implements RemoveScheme { /** * KeyList vector (or ElementList Vector, as defined in the paper) of false positives. */ List<Key>[] fpVector; /** * KeyList vector of keys recorded in the filter. */ List<Key>[] keyVector; /** * Ratio vector. */ double[] ratio; private Random rand; /** Default constructor - use with readFields */ public RetouchedBloomFilter() {} /** * Constructor * @param vectorSize The vector size of <i>this</i> filter. * @param nbHash The number of hash function to consider. * @param hashType type of the hashing function (see * {@link org.apache.hadoop.util.hash.Hash}). */ public RetouchedBloomFilter(int vectorSize, int nbHash, int hashType) { super(vectorSize, nbHash, hashType); this.rand = null; createVector(); } @Override public void add(Key key) { if (key == null) { throw new NullPointerException("key can not be null"); } int[] h = hash.hash(key); hash.clear(); for (int i = 0; i < nbHash; i++) { bits.set(h[i]); keyVector[h[i]].add(key); } } /** * Adds a false positive information to <i>this</i> retouched Bloom filter. * <p> * <b>Invariant</b>: if the false positive is <code>null</code>, nothing happens. * @param key The false positive key to add. */ public void addFalsePositive(Key key) { if (key == null) { throw new NullPointerException("key can not be null"); } int[] h = hash.hash(key); hash.clear(); for (int i = 0; i < nbHash; i++) { fpVector[h[i]].add(key); } } /** * Adds a collection of false positive information to <i>this</i> retouched Bloom filter. * @param coll The collection of false positive. */ public void addFalsePositive(Collection<Key> coll) { if (coll == null) { throw new NullPointerException("Collection<Key> can not be null"); } for (Key k : coll) { addFalsePositive(k); } } /** * Adds a list of false positive information to <i>this</i> retouched Bloom filter. * @param keys The list of false positive. */ public void addFalsePositive(List<Key> keys) { if (keys == null) { throw new NullPointerException("ArrayList<Key> can not be null"); } for (Key k : keys) { addFalsePositive(k); } } /** * Adds an array of false positive information to <i>this</i> retouched Bloom filter. * @param keys The array of false positive. */ public void addFalsePositive(Key[] keys) { if (keys == null) { throw new NullPointerException("Key[] can not be null"); } for (int i = 0; i < keys.length; i++) { addFalsePositive(keys[i]); } } /** * Performs the selective clearing for a given key. * @param k The false positive key to remove from <i>this</i> retouched Bloom filter. * @param scheme The selective clearing scheme to apply. */ public void selectiveClearing(Key k, short scheme) { if (k == null) { throw new NullPointerException("Key can not be null"); } if (!membershipTest(k)) { throw new IllegalArgumentException("Key is not a member"); } int index = 0; int[] h = hash.hash(k); switch(scheme) { case RANDOM: index = randomRemove(); break; case MINIMUM_FN: index = minimumFnRemove(h); break; case MAXIMUM_FP: index = maximumFpRemove(h); break; case RATIO: index = ratioRemove(h); break; default: throw new AssertionError("Undefined selective clearing scheme"); } clearBit(index); } private int randomRemove() { if (rand == null) { rand = new Random(); } return rand.nextInt(nbHash); } /** * Chooses the bit position that minimizes the number of false negative generated. * @param h The different bit positions. * @return The position that minimizes the number of false negative generated. */ private int minimumFnRemove(int[] h) { int minIndex = Integer.MAX_VALUE; double minValue = Double.MAX_VALUE; for (int i = 0; i < nbHash; i++) { double keyWeight = getWeight(keyVector[h[i]]); if (keyWeight < minValue) { minIndex = h[i]; minValue = keyWeight; } } return minIndex; } /** * Chooses the bit position that maximizes the number of false positive removed. * @param h The different bit positions. * @return The position that maximizes the number of false positive removed. */ private int maximumFpRemove(int[] h) { int maxIndex = Integer.MIN_VALUE; double maxValue = Double.MIN_VALUE; for (int i = 0; i < nbHash; i++) { double fpWeight = getWeight(fpVector[h[i]]); if (fpWeight > maxValue) { maxValue = fpWeight; maxIndex = h[i]; } } return maxIndex; } /** * Chooses the bit position that minimizes the number of false negative generated while maximizing. * the number of false positive removed. * @param h The different bit positions. * @return The position that minimizes the number of false negative generated while maximizing. */ private int ratioRemove(int[] h) { computeRatio(); int minIndex = Integer.MAX_VALUE; double minValue = Double.MAX_VALUE; for (int i = 0; i < nbHash; i++) { if (ratio[h[i]] < minValue) { minValue = ratio[h[i]]; minIndex = h[i]; } } return minIndex; } /** * Clears a specified bit in the bit vector and keeps up-to-date the KeyList vectors. * @param index The position of the bit to clear. */ private void clearBit(int index) { if (index < 0 || index >= vectorSize) { throw new ArrayIndexOutOfBoundsException(index); } List<Key> kl = keyVector[index]; List<Key> fpl = fpVector[index]; // update key list int listSize = kl.size(); for (int i = 0; i < listSize && !kl.isEmpty(); i++) { removeKey(kl.get(0), keyVector); } kl.clear(); keyVector[index].clear(); //update false positive list listSize = fpl.size(); for (int i = 0; i < listSize && !fpl.isEmpty(); i++) { removeKey(fpl.get(0), fpVector); } fpl.clear(); fpVector[index].clear(); //update ratio ratio[index] = 0.0; //update bit vector bits.clear(index); } /** * Removes a given key from <i>this</i> filer. * @param k The key to remove. * @param vector The counting vector associated to the key. */ private void removeKey(Key k, List<Key>[] vector) { if (k == null) { throw new NullPointerException("Key can not be null"); } if (vector == null) { throw new NullPointerException("ArrayList<Key>[] can not be null"); } int[] h = hash.hash(k); hash.clear(); for (int i = 0; i < nbHash; i++) { vector[h[i]].remove(k); } } /** * Computes the ratio A/FP. */ private void computeRatio() { for (int i = 0; i < vectorSize; i++) { double keyWeight = getWeight(keyVector[i]); double fpWeight = getWeight(fpVector[i]); if (keyWeight > 0 && fpWeight > 0) { ratio[i] = keyWeight / fpWeight; } } } private double getWeight(List<Key> keyList) { double weight = 0.0; for (Key k : keyList) { weight += k.getWeight(); } return weight; } /** * Creates and initialises the various vectors. */ @SuppressWarnings("unchecked") private void createVector() { fpVector = new List[vectorSize]; keyVector = new List[vectorSize]; ratio = new double[vectorSize]; for (int i = 0; i < vectorSize; i++) { fpVector[i] = Collections.synchronizedList(new ArrayList<Key>()); keyVector[i] = Collections.synchronizedList(new ArrayList<Key>()); ratio[i] = 0.0; } } // Writable @Override public void write(DataOutput out) throws IOException { super.write(out); for (int i = 0; i < fpVector.length; i++) { List<Key> list = fpVector[i]; out.writeInt(list.size()); for (Key k : list) { k.write(out); } } for (int i = 0; i < keyVector.length; i++) { List<Key> list = keyVector[i]; out.writeInt(list.size()); for (Key k : list) { k.write(out); } } for (int i = 0; i < ratio.length; i++) { out.writeDouble(ratio[i]); } } @Override public void readFields(DataInput in) throws IOException { super.readFields(in); createVector(); for (int i = 0; i < fpVector.length; i++) { List<Key> list = fpVector[i]; int size = in.readInt(); for (int j = 0; j < size; j++) { Key k = new Key(); k.readFields(in); list.add(k); } } for (int i = 0; i < keyVector.length; i++) { List<Key> list = keyVector[i]; int size = in.readInt(); for (int j = 0; j < size; j++) { Key k = new Key(); k.readFields(in); list.add(k); } } for (int i = 0; i < ratio.length; i++) { ratio[i] = in.readDouble(); } } }