/* * Copyright (C) 2004-2007 Rajarshi Guha <rajarshi@users.sourceforge.net> * * Contact: cdk-devel@lists.sourceforge.net * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public License * as published by the Free Software Foundation; either version 2.1 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. */ package org.openscience.cdk.qsar.descriptors.molecular; import org.openscience.cdk.annotations.TestClass; import org.openscience.cdk.annotations.TestMethod; import org.openscience.cdk.exception.CDKException; import org.openscience.cdk.graph.PathTools; import org.openscience.cdk.interfaces.IAtom; import org.openscience.cdk.interfaces.IAtomContainer; import org.openscience.cdk.qsar.DescriptorSpecification; import org.openscience.cdk.qsar.DescriptorValue; import org.openscience.cdk.qsar.IMolecularDescriptor; import org.openscience.cdk.qsar.result.DoubleArrayResult; import org.openscience.cdk.qsar.result.DoubleArrayResultType; import org.openscience.cdk.qsar.result.IDescriptorResult; import org.openscience.cdk.tools.manipulator.AtomContainerManipulator; import java.util.ArrayList; import java.util.List; /** * Evaluates the weighted path descriptors. * <p/> * These decsriptors were described by Randic ({@cdk.cite RAN84}) and characterize molecular * branching. Five descriptors are calculated, based on the implementation in the ADAPT * software package. Note that the descriptor is based on identifying <b>all</b> pahs between pairs of * atoms and so is NP-hard. This means that it can take some time for large, complex molecules. * The class returns a <code>DoubleArrayResult</code> containing the five * descriptors in the order described below. * <p/> * <center> * <table border=1> * <caption><a name="dmwp">DMWP</a></caption> * <tr> * <td>WTPT1</td><td>molecular ID</td></tr><tr> * <td>WTPT2</td><td> molecular ID / number of atoms</td></tr><tr> * <td>WTPT3</td><td> sum of path lengths starting * from heteroatoms</td></tr><tr> * <p/> * <td>WTPT4</td><td> sum of path lengths starting * from oxygens</td></tr><tr> * <td>WTPT5</td><td> sum of path lengths starting * from nitrogens</td></tr> * </table> * </center> * * <p>This descriptor uses these parameters: * <table border="1"> * <tr> * <td>Name</td> * <td>Default</td> * <td>Description</td> * </tr> * <tr> * <td></td> * <td></td> * <td>no parameters</td> * </tr> * </table> * * @author Rajarshi Guha * @cdk.created 2006-01-15 * @cdk.module qsarmolecular * @cdk.githash * @cdk.set qsar-descriptors * @cdk.dictref qsar-descriptors:weightedPath */ @TestClass("org.openscience.cdk.qsar.descriptors.molecular.WeightedPathDescriptorTest") public class WeightedPathDescriptor implements IMolecularDescriptor { private static final String[] names = { "WTPT-1", "WTPT-2", "WTPT-3", "WTPT-4", "WTPT-5" }; public WeightedPathDescriptor() { } @TestMethod("testGetSpecification") public DescriptorSpecification getSpecification() { return new DescriptorSpecification( "http://www.blueobelisk.org/ontologies/chemoinformatics-algorithms/#weightedPath", this.getClass().getName(), "$Id$", "The Chemistry Development Kit"); } /** * Sets the parameters attribute of the WeightedPathDescriptor object. * * @param params The new parameters value * @throws org.openscience.cdk.exception.CDKException * Description of the Exception */ @TestMethod("testSetParameters_arrayObject") public void setParameters(Object[] params) throws CDKException { // no parameters for this descriptor } /** * Gets the parameters attribute of the WeightedPathDescriptor object. * * @return The parameters value */ @TestMethod("testGetParameters") public Object[] getParameters() { // no parameters to return return (null); } @TestMethod(value="testNamesConsistency") public String[] getDescriptorNames() { return names; } /** * Gets the parameterNames attribute of the WeightedPathDescriptor object. * * @return The parameterNames value */ @TestMethod("testGetParameterNames") public String[] getParameterNames() { // no param names to return return (null); } /** * Gets the parameterType attribute of the WeightedPathDescriptor object. * * @param name Description of the Parameter * @return The parameterType value */ @TestMethod("testGetParameterType_String") public Object getParameterType(String name) { return (null); } /** * Calculates the weighted path descriptors. * * @param container Parameter is the atom container. * @return A DoubleArrayResult value representing the weighted path values */ @TestMethod("testCalculate_IAtomContainer") public DescriptorValue calculate(IAtomContainer container) { IAtomContainer local = AtomContainerManipulator.removeHydrogens(container); int natom = local.getAtomCount(); DoubleArrayResult retval = new DoubleArrayResult(); ArrayList pathList = new ArrayList(); // unique paths for (int i = 0; i < natom - 1; i++) { IAtom a = local.getAtom(i); for (int j = i + 1; j < natom; j++) { IAtom b = local.getAtom(j); pathList.addAll(PathTools.getAllPaths(local, a, b)); } } // heteroatoms double[] pathWts = getPathWeights(pathList, local); double mid = 0.0; for (double pathWt3 : pathWts) mid += pathWt3; mid += natom; // since we don't calculate paths of length 0 above retval.add(mid); retval.add(mid / (double) natom); pathList.clear(); int count = 0; for (int i = 0; i < natom; i++) { IAtom a = local.getAtom(i); if (a.getSymbol().equalsIgnoreCase("C")) continue; count++; for (int j = 0; j < natom; j++) { IAtom b = local.getAtom(j); if (a.equals(b)) continue; pathList.addAll(PathTools.getAllPaths(local, a, b)); } } pathWts = getPathWeights(pathList, local); mid = 0.0; for (double pathWt2 : pathWts) mid += pathWt2; mid += count; retval.add(mid); // oxygens pathList.clear(); count = 0; for (int i = 0; i < natom; i++) { IAtom a = local.getAtom(i); if (!a.getSymbol().equalsIgnoreCase("O")) continue; count++; for (int j = 0; j < natom; j++) { IAtom b = local.getAtom(j); if (a.equals(b)) continue; pathList.addAll(PathTools.getAllPaths(local, a, b)); } } pathWts = getPathWeights(pathList, local); mid = 0.0; for (double pathWt1 : pathWts) mid += pathWt1; mid += count; retval.add(mid); // nitrogens pathList.clear(); count = 0; for (int i = 0; i < natom; i++) { IAtom a = local.getAtom(i); if (!a.getSymbol().equalsIgnoreCase("N")) continue; count++; for (int j = 0; j < natom; j++) { IAtom b = local.getAtom(j); if (a.equals(b)) continue; pathList.addAll(PathTools.getAllPaths(local, a, b)); } } pathWts = getPathWeights(pathList, local); mid = 0.0; for (double pathWt : pathWts) mid += pathWt; mid += count; retval.add(mid); return new DescriptorValue(getSpecification(), getParameterNames(), getParameters(), retval, getDescriptorNames()); } /** * Returns the specific type of the DescriptorResult object. * <p/> * The return value from this method really indicates what type of result will * be obtained from the {@link org.openscience.cdk.qsar.DescriptorValue} object. Note that the same result * can be achieved by interrogating the {@link org.openscience.cdk.qsar.DescriptorValue} object; this method * allows you to do the same thing, without actually calculating the descriptor. * * @return an object that implements the {@link org.openscience.cdk.qsar.result.IDescriptorResult} interface indicating * the actual type of values returned by the descriptor in the {@link org.openscience.cdk.qsar.DescriptorValue} object */ @TestMethod("testGetDescriptorResultType") public IDescriptorResult getDescriptorResultType() { return new DoubleArrayResultType(5); } private double[] getPathWeights(List pathList, IAtomContainer atomContainer) { double[] pathWts = new double[pathList.size()]; for (int i = 0; i < pathList.size(); i++) { List p = (List) pathList.get(i); pathWts[i] = 1.0; for (int j = 0; j < p.size() - 1; j++) { IAtom a = (IAtom) p.get(j); IAtom b = (IAtom) p.get(j + 1); int n1 = atomContainer.getConnectedAtomsList(a).size(); int n2 = atomContainer.getConnectedAtomsList(b).size(); pathWts[i] /= Math.sqrt(n1 * n2); } } return pathWts; } }