/* * $RCSfile$ * $Author$ * $Date$ * $Revision$ * * Copyright (C) 2004-2007 The Chemistry Development Kit (CDK) project * * Contact: cdk-devel@lists.sourceforge.net * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public License * as published by the Free Software Foundation; either version 2.1 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. */ package org.openscience.cdk.qsar.descriptors.molecular; import org.openscience.cdk.annotations.TestClass; import org.openscience.cdk.annotations.TestMethod; import org.openscience.cdk.exception.CDKException; import org.openscience.cdk.interfaces.IAtom; import org.openscience.cdk.interfaces.IAtomContainer; import org.openscience.cdk.qsar.DescriptorSpecification; import org.openscience.cdk.qsar.DescriptorValue; import org.openscience.cdk.qsar.IMolecularDescriptor; import org.openscience.cdk.qsar.result.DoubleArrayResult; import org.openscience.cdk.qsar.result.DoubleArrayResultType; import org.openscience.cdk.qsar.result.IDescriptorResult; import org.openscience.cdk.tools.manipulator.AtomContainerManipulator; import java.util.ArrayList; /** * Kier and Hall kappa molecular shape indices compare the molecular graph with minimal and maximal molecular graphs; * a description is given at: http://www.chemcomp.com/Journal_of_CCG/Features/descr.htm#KH : * "they are intended to capture different aspects of molecular shape. Note that hydrogens are ignored. * In the following description, n denotes the number of atoms in the hydrogen suppressed graph, * m is the number of bonds in the hydrogen suppressed graph. Also, let p2 denote the number of paths of length 2 * and let p3 denote the number of paths of length 3". * <p/> * Returns three values in the order * <ol> * <li>Kier1 - First kappa shape index * <li>Kier2 - Second kappa shape index * <li>Kier3 - Third kappa (κ) shape index * </ol> * <p/> * <p>This descriptor does not have any parameters. * * @author mfe4 * @cdk.created 2004-11-03 * @cdk.module qsarmolecular * @cdk.githash * @cdk.set qsar-descriptors * @cdk.dictref qsar-descriptors:kierValues * @cdk.keyword Kappe shape index * @cdk.keyword descriptor */ @TestClass("org.openscience.cdk.qsar.descriptors.molecular.KappaShapeIndicesDescriptorTest") public class KappaShapeIndicesDescriptor implements IMolecularDescriptor { private static final String[] names = {"Kier1", "Kier2", "Kier3"}; /** * Constructor for the KappaShapeIndicesDescriptor object */ public KappaShapeIndicesDescriptor() { } /** * Gets the specification attribute of the * KappaShapeIndicesDescriptor object * * @return The specification value */ @TestMethod("testGetSpecification") public DescriptorSpecification getSpecification() { return new DescriptorSpecification( "http://www.blueobelisk.org/ontologies/chemoinformatics-algorithms/#kierValues", this.getClass().getName(), "$Id$", "The Chemistry Development Kit"); } /** * Sets the parameters attribute of the * KappaShapeIndicesDescriptor object * * @param params The new parameters value * @throws CDKException Description of the Exception */ @TestMethod("testSetParameters_arrayObject") public void setParameters(Object[] params) throws CDKException { // no parameters for this descriptor } /** * Gets the parameters attribute of the * KappaShapeIndicesDescriptor object * * @return The parameters value */ @TestMethod("testGetParameters") public Object[] getParameters() { // no parameters to return return (null); } @TestMethod(value="testNamesConsistency") public String[] getDescriptorNames() { return names; } /** * calculates the kier shape indices for an atom container * * @param container AtomContainer * @return kier1, kier2 and kier3 are returned as arrayList of doubles * @throws CDKException Possible Exceptions */ @TestMethod("testCalculate_IAtomContainer") public DescriptorValue calculate(IAtomContainer container) { IAtomContainer atomContainer; try { atomContainer = (IAtomContainer) container.clone(); } catch (CloneNotSupportedException e) { DoubleArrayResult kierValues = new DoubleArrayResult(3); kierValues.add(Double.NaN); kierValues.add(Double.NaN); kierValues.add(Double.NaN); return new DescriptorValue(getSpecification(), getParameterNames(), getParameters(), kierValues, getDescriptorNames()); } atomContainer = AtomContainerManipulator.removeHydrogens(atomContainer); //org.openscience.cdk.interfaces.IAtom[] atoms = atomContainer.getAtoms(); java.util.List firstAtomNeighboors; java.util.List secondAtomNeighboors; java.util.List thirdAtomNeighboors; DoubleArrayResult kierValues = new DoubleArrayResult(3); double bond1; double bond2; double bond3; double kier1; double kier2; double kier3; double atomsCount = atomContainer.getAtomCount(); ArrayList<Double> singlePaths = new ArrayList<Double>(); ArrayList<String> doublePaths = new ArrayList<String>(); ArrayList<String> triplePaths = new ArrayList<String>(); double[] sorterFirst = new double[2]; double[] sorterSecond = new double[3]; String tmpbond2; String tmpbond3; for (int a1 = 0; a1 < atomsCount; a1++) { bond1 = 0; firstAtomNeighboors = atomContainer.getConnectedAtomsList(atomContainer.getAtom(a1)); for (int a2 = 0; a2 < firstAtomNeighboors.size(); a2 ++) { bond1 = atomContainer.getBondNumber(atomContainer.getAtom(a1), (IAtom) firstAtomNeighboors.get(a2)); if (!singlePaths.contains(new Double(bond1))) { singlePaths.add(bond1); java.util.Collections.sort(singlePaths); } secondAtomNeighboors = atomContainer.getConnectedAtomsList((IAtom) firstAtomNeighboors.get(a2)); for (int a3 = 0; a3 < secondAtomNeighboors.size(); a3 ++) { bond2 = atomContainer.getBondNumber((IAtom) firstAtomNeighboors.get(a2), (IAtom) secondAtomNeighboors.get(a3)); if (!singlePaths.contains(new Double(bond2))) { singlePaths.add(bond2); } sorterFirst[0] = bond1; sorterFirst[1] = bond2; java.util.Arrays.sort(sorterFirst); tmpbond2 = sorterFirst[0] + "+" + sorterFirst[1]; if (!doublePaths.contains(tmpbond2) && (bond1 != bond2)) { doublePaths.add(tmpbond2); } thirdAtomNeighboors = atomContainer.getConnectedAtomsList((IAtom) secondAtomNeighboors.get(a3)); for (int a4 = 0; a4 < thirdAtomNeighboors.size(); a4 ++) { bond3 = atomContainer.getBondNumber((IAtom) secondAtomNeighboors.get(a3), (IAtom) thirdAtomNeighboors.get(a4)); if (!singlePaths.contains(new Double(bond3))) { singlePaths.add(bond3); } sorterSecond[0] = bond1; sorterSecond[1] = bond2; sorterSecond[2] = bond3; java.util.Arrays.sort(sorterSecond); tmpbond3 = sorterSecond[0] + "+" + sorterSecond[1] + "+" + sorterSecond[2]; if (!triplePaths.contains(tmpbond3)) { if ((bond1 != bond2) && (bond1 != bond3) && (bond2 != bond3)) { triplePaths.add(tmpbond3); } } } } } } if (atomsCount == 1) { kier1 = 0; kier2 = 0; kier3 = 0; } else { kier1 = (((atomsCount) * ((atomsCount - 1) * (atomsCount - 1))) / (singlePaths.size() * singlePaths.size())); if (atomsCount == 2) { kier2 = 0; kier3 = 0; } else { if (doublePaths.size() == 0) kier2 = Double.NaN; else kier2 = (((atomsCount - 1) * ((atomsCount - 2) * (atomsCount - 2))) / (doublePaths.size() * doublePaths.size())); if (atomsCount == 3) { kier3 = 0; } else { if (atomsCount % 2 != 0) { if (triplePaths.size() == 0) kier3 = Double.NaN; else kier3 = (((atomsCount - 1) * ((atomsCount - 3) * (atomsCount - 3))) / (triplePaths.size() * triplePaths.size())); } else { if (triplePaths.size() == 0) kier3 = Double.NaN; else kier3 = (((atomsCount - 3) * ((atomsCount - 2) * (atomsCount - 2))) / (triplePaths.size() * triplePaths.size())); } } } } kierValues.add(kier1); kierValues.add(kier2); kierValues.add(kier3); return new DescriptorValue(getSpecification(), getParameterNames(), getParameters(), kierValues, getDescriptorNames()); } /** * Returns the specific type of the DescriptorResult object. * <p/> * The return value from this method really indicates what type of result will * be obtained from the {@link org.openscience.cdk.qsar.DescriptorValue} object. Note that the same result * can be achieved by interrogating the {@link org.openscience.cdk.qsar.DescriptorValue} object; this method * allows you to do the same thing, without actually calculating the descriptor. * * @return an object that implements the {@link org.openscience.cdk.qsar.result.IDescriptorResult} interface indicating * the actual type of values returned by the descriptor in the {@link org.openscience.cdk.qsar.DescriptorValue} object */ @TestMethod("testGetDescriptorResultType") public IDescriptorResult getDescriptorResultType() { return new DoubleArrayResultType(3); } /** * Gets the parameterNames attribute of the * KappaShapeIndicesDescriptor object * * @return The parameterNames value */ @TestMethod("testGetParameterNames") public String[] getParameterNames() { // no param names to return return (null); } /** * Gets the parameterType attribute of the * KappaShapeIndicesDescriptor object * * @param name Description of the Parameter * @return The parameterType value */ @TestMethod("testGetParameterType_String") public Object getParameterType(String name) { return (null); } }