/* $RCSfile$ * $Author$ * $Date$ * $Revision$ * * Copyright (C) 2004-2008 Rajarshi Guha <rajarshi.guha@gmail.com> * * Contact: cdk-devel@lists.sourceforge.net * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public License * as published by the Free Software Foundation; either version 2.1 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. */ package org.openscience.cdk.qsar.model.R; import org.openscience.cdk.qsar.model.QSARModelException; import java.util.HashMap; /** * A modeling class that provides a computational neural network regression model. * * When instantiated this class ensures that the R/Java interface has been * initialized. The response and independent variables can be specified at construction * time or via the <code>setParameters</code> method. * The actual fitting procedure is carried out by <code>build</code> after which * the model may be used to make predictions, via <code>predict</code>. An example of the use * of this class is shown below: * <pre> * double[][] x; * double[] y; * Double[] wts; * Double[][] newx; * ... * try { * CNNRegressionModel cnnrm = new CNNRegressionModel(x,y,3); * cnnrm.setParameters("Wts",wts); * cnnrm.build(); * * double fitValue = cnnrm.getFitValue(); * * cnnrm.setParameters("newdata", newx); * cnnrm.setParameters("type", "raw"); * cnnrm.predict(); * * double[][] preds = cnnrm.getPredictPredicted(); * } catch (QSARModelException qme) { * System.out.println(qme.toString()); * } * </pre> * The above code snippet builds a 3-3-1 CNN model. * Multiple output neurons are easily * specified by supplying a matrix for y (i.e., double[][]) with the output variables * in the columns. * <p> * Nearly all the arguments to * <a href="http://www.maths.lth.se/help/R/.R/library/nnet/html/nnet.html" target="_top">nnet()</a> are * supported via the <code>setParameters</code> method. The table below lists the names of the arguments, * the expected type of the argument and the default setting for the arguments supported by this wrapper class. * <center> * <table border=1 cellpadding=5> * <THEAD> * <tr> * <th>Name</th><th>Java Type</th><th>Default</th><th>Notes</th> * </tr> * </thead> * <tbody> * <tr><td>x</td><td>Double[][]</td><td>None</td><td>This must be set by the caller via the constructors or via <code>setParameters</code></td></tr> * <tr><td>y</td><td>Double[][]</td><td>None</td><td>This must be set by the caller via the constructors or via <code>setParameters</code></td></tr> * <tr><td>weights</td><td>Double[]</td><td>rep(1,nobs)</td><td>The default case weights is a vector of 1's equal in length to the number of observations, nobs</td></tr> * <tr><td>size</td><td>Integer</td><td>None</td><td>This must be set by the caller via the constructors or via <code>setParameters</code></td></tr> * <tr><td>subset</td><td>Integer[]</td><td>1:nobs</td><td>This is supposed to be an index vector specifying which observations are to be used in building the model. The default indicates that all should be used</td></tr> * <tr><td>Wts</td><td>Double[]</td><td>runif(1,nwt)</td><td>The initial weight vector is set to a random vector of length equal to the number of weights if not set by the user</td></tr> * <tr><td>mask</td><td>Boolean[]</td><td>rep(TRUE,nwt)</td><td>All weights are to be optimized unless otherwise specified by the user</td></tr> * <tr><td>linout</td><td>Boolean</td><td>TRUE</td><td>Since this class performs regression this need not be changed</td></tr> * <tr><td>entropy</td><td>Boolean</td><td>FALSE</td><td></td></tr> * <tr><td>softmax</td><td>Boolean</td><td>FALSE</td><td></td></tr> * <tr><td>censored</td><td>Boolean</td><td>FALSE</td><td></td></tr> * <tr><td>skip</td><td>Boolean</td><td>FALSE</td><td></td></tr> * <tr><td>rang</td><td>Double</td><td>0.7</td><td></td></tr> * <tr><td>decay</td><td>Double</td><td>0.0</td><td></td></tr> * <tr><td>maxit</td><td>Integer</td><td>100</td><td></td></tr> * <tr><td>Hess</td><td>Boolean</td><td>FALSE</td><td></td></tr> * <tr><td>trace</td><td>Boolean</td><td>TRUE</td><td></td></tr> * <tr><td>MaxNWts</td><td>Integer</td><td>1000</td><td></td></tr> * <tr><td>abstol</td><td>Double</td><td>1.0e-4</td><td></td></tr> * <tr><td>reltol</td><td>Double</td><td>1.0e-8</td><td></td></tr> * </tbody> * </table> * </center> * <p> * In general the <code>getFit*</code> methods provide access to results from the fit * and <code>getPredict*</code> methods provide access to results from the prediction (i.e., * prediction using the model on new data). The values returned correspond to the various * values returned by the <a href="http://www.maths.lth.se/help/R/.R/library/nnet/html/nnet.html" target="_top">nnet</a> and * <a href="http://www.maths.lth.se/help/R/.R/library/nnet/html/predict.nnet.html" target="_top">predict.nnet</a> functions * in R * <p> * See {@link RModel} for details regarding the R and SJava environment. * * @author Rajarshi Guha * @cdk.require r-project * @cdk.module qsar * @cdk.githash * * @cdk.keyword neural network * @cdk.keyword regression * @deprecated */ public class CNNRegressionModel extends RModel { public static int globalID = 0; private int currentID; private CNNRegressionModelFit modelfit = null; private CNNRegressionModelPredict modelpredict = null; private HashMap params = null; private int noutput = 0; private int nvar = 0; private void setDefaults() { // lets set the default values of the arguments that are specified // to have default values in ?nnet // these params are vectors that depend on user defined stuff // so as a default we set them to FALSE so R can check if these // were not set this.params.put("subset", new Boolean(false)); this.params.put("mask", new Boolean(false) ); this.params.put("Wts", new Boolean(false)); this.params.put("weights", new Boolean(false)); this.params.put("linout", new Boolean(true)); // we want only regression this.params.put("entropy", new Boolean(false)); this.params.put("softmax",new Boolean(false)); this.params.put("censored", new Boolean(false)); this.params.put("skip", new Boolean(false)); this.params.put("rang", new Double(0.7)); this.params.put("decay", new Double(0.0)); this.params.put("maxit", Integer.valueOf(100)); this.params.put("Hess", new Boolean(false)); this.params.put("trace", new Boolean(false)); // no need to see output this.params.put("MaxNWts", Integer.valueOf(1000)); this.params.put("abstol", new Double(1.0e-4)); this.params.put("reltol", new Double(1.0e-8)); } /** * Constructs a CNNRegressionModel object. * * This constructor allows the user to simply set up an instance of a CNN * regression modeling class. This constructor simply sets the name for this * instance. It is expected all the relevent parameters for modeling will be * set at a later point. * <p> * Other parameters that are required to be set should be done via * calls to <code>setParameters</code>. A number of parameters are set to the * defaults as specified in the manpage for * <a href="http://www.maths.lth.se/help/R/.R/library/nnet/html/nnet.html" target="_top">nnet</a>. * */ public CNNRegressionModel() { super(); this.params = new HashMap(); this.currentID = CNNClassificationModel.globalID; CNNClassificationModel.globalID++; this.setModelName("cdkCNNModel"+this.currentID); this.setDefaults(); } /** * Constructs a CNNRegressionModel object. * * This constructor allows the user to specify the dependent and * independent variables along with the number of hidden layer neurons. * This constructor is suitable for cases when there is a single output * neuron. If the number of rows of the design matrix is not equal to * the number of observations in y an exception will be thrown. * <p> * Other parameters that are required to be set should be done via * calls to <code>setParameters</code>. A number of parameters are set to the * defaults as specified in the manpage for * <a href="http://www.maths.lth.se/help/R/.R/library/nnet/html/nnet.html" target="_top">nnet</a>. * * @param x An array of independent variables. Observations should be in * the rows and variables in the columns. * @param y An array (single column) of observed values * @param size The number of hidden layer neurons * @throws QSARModelException if the number of observations in x and y do not match */ public CNNRegressionModel(double[][] x, double[] y, int size) throws QSARModelException { super(); this.params = new HashMap(); this.currentID = CNNRegressionModel.globalID; CNNRegressionModel.globalID++; this.setModelName("cdkCNNModel"+this.currentID); int nrow = y.length; int ncol = x[0].length; if (nrow != x.length) { throw new QSARModelException("The number of values for the dependent variable does not match the number of rows of the design matrix"); } this.nvar = ncol; this.noutput = 1; Double[][] xx = new Double[nrow][ncol]; Double[][] yy = new Double[nrow][1]; for (int i = 0; i < nrow; i++) { yy[i][0] = new Double(y[i]); for (int j = 0; j < ncol; j++) { xx[i][j] = new Double(x[i][j]); } } this.params.put("x", xx); this.params.put("y", yy); this.params.put("size", Integer.valueOf(size)); this.setDefaults(); } /** * Constructs a CNNRegressionModel object. * * This constructor allows the user to specify the dependent and * independent variables along with the number of hidden layer neurons. * This constructor is suitable for cases when there are multiple output * neuron. If the number of rows of the design matrix is not equal to * the number of observations in y an exception will be thrown. * <p> * Other parameters that are required to be set should be done via * calls to <code>setParameters</code>. A number of parameters are set to the * defaults as specified in the manpage for * <a href="http://www.maths.lth.se/help/R/.R/library/nnet/html/nnet.html" target="_top">nnet</a>. * * @param x An array of independent variables. Observations should be in * the rows and variables in the columns. * @param y An array (multiple columns) of observed values * @param size The number of hidden layer neurons * @throws QSARModelException if the number of observations in x and y do not match */ public CNNRegressionModel(double[][] x, double[][] y, int size) throws QSARModelException{ super(); this.params = new HashMap(); this.currentID = CNNRegressionModel.globalID; CNNRegressionModel.globalID++; this.setModelName("cdkCNNModel"+this.currentID); int nrow = y.length; int ncol = x[0].length; if (nrow != x.length) { throw new QSARModelException("The number of values for the dependent variable does not match the number of rows of the design matrix"); } this.nvar = ncol; this.noutput = y[0].length; Double[][] xx = new Double[nrow][ncol]; Double[][] yy = new Double[nrow][this.noutput]; for (int i = 0; i < nrow; i++) { for (int j = 0; j < ncol; j++) { xx[i][j] = new Double(x[i][j]); } } for (int i = 0; i < nrow; i++) { for (int j = 0; j < this.noutput; j++) { yy[i][j] = new Double(y[i][j]); } } this.params.put("x", xx); this.params.put("y", yy); this.params.put("size", Integer.valueOf(size)); this.setDefaults(); } /** * Sets parameters required for building a linear model or using one for prediction. * * This function allows the caller to set the various parameters available * for the * <a href="http://www.maths.lth.se/help/R/.R/library/nnet/html/nnet.html" target="_top">nnet</a> * and * <a href="http://www.maths.lth.se/help/R/.R/library/nnet/html/predict.nnet.html" target="_top">predict.nnet</a> * R routines. See the R help pages for the details of the available * parameters. * * @param key A String containing the name of the parameter as described in the * R help pages * @param obj An Object containing the value of the parameter * @throws QSARModelException if the type of the supplied value does not match the * expected type */ public void setParameters(String key, Object obj) throws QSARModelException { // since we know the possible values of key we should check the coresponding // objects and throw errors if required. Note that this checking can't really check // for values (such as number of variables in the X matrix to build the model and the // X matrix to make new predictions) - these should be checked in functions that will // use these parameters. The main checking done here is for the class of obj and // some cases where the value of obj is not dependent on what is set before it if (key.equals("y")) { if (!(obj instanceof Double[][])) { throw new QSARModelException("The class of the 'y' object must be Double[][]"); } else { noutput = ((Double[][])obj)[0].length; } } if (key.equals("x")) { if (!(obj instanceof Double[][])) { throw new QSARModelException("The class of the 'x' object must be Double[][]"); } else { nvar = ((Double[][])obj)[0].length; } } if (key.equals("weights")) { if (!(obj instanceof Double[])) { throw new QSARModelException("The class of the 'weights' object must be Double[]"); } } if (key.equals("size")) { if (!(obj instanceof Integer)) { throw new QSARModelException("The class of the 'size' object must be Integer"); } } if (key.equals("subset")) { if (!(obj instanceof Integer[])) { throw new QSARModelException("The class of the 'size' object must be Integer[]"); } } if (key.equals("Wts")) { if (!(obj instanceof Double[])) { throw new QSARModelException("The class of the 'Wts' object must be Double[]"); } } if (key.equals("mask")) { if (!(obj instanceof Boolean[])) { throw new QSARModelException("The class of the 'mask' object must be Boolean[]"); } } if (key.equals("linout") || key.equals("entropy") || key.equals("softmax") || key.equals("censored") || key.equals("skip") || key.equals("Hess") || key.equals("trace")) { if (!(obj instanceof Boolean)) { throw new QSARModelException("The class of the 'trace|skip|Hess|linout|entropy|softmax|censored' object must be Boolean"); } } if (key.equals("rang") || key.equals("decay") || key.equals("abstol") || key.equals("reltol")) { if (!(obj instanceof Double)) { throw new QSARModelException("The class of the 'reltol|abstol|decay|rang' object must be Double"); } } if (key.equals("maxit") || key.equals("MaxNWts")) { if (!(obj instanceof Integer)) { throw new QSARModelException("The class of the 'maxit|MaxNWts' object must be Integer"); } } if (key.equals("newdata")) { if ( !(obj instanceof Double[][])) { throw new QSARModelException("The class of the 'newdata' object must be Double[][]"); } } this.params.put(key,obj); } /** * Fits a CNN regression model. * * This method calls the R function to fit a CNN regression model * to the specified dependent and independent variables. If an error * occurs in the R session, an exception is thrown. * <p> * Note that, this method should be called prior to calling the various get * methods to obtain information regarding the fit. */ public void build() throws QSARModelException { try { this.modelfit = (CNNRegressionModelFit)revaluator.call("buildCNN", new Object[]{ getModelName(), this.params }); } catch (Exception re) { throw new QSARModelException(re.toString()); } } /** * Uses a fitted model to predict the response for new observations. * * This function uses a previously fitted model to obtain predicted values * for a new set of observations. If the model has not been fitted prior to this * call an exception will be thrown. Use <code>setParameters</code> * to set the values of the independent variable for the new observations. You can also * set the <code>type</code> argument (see <a href="http://www.maths.lth.se/help/R/.R/library/nnet/html/nnet.html" target="_top">here</a>). * However, since this class performs CNN regression, the default setting (<code>type='raw'</code>) is sufficient. */ public void predict() throws QSARModelException { if (this.modelfit == null) throw new QSARModelException("Before calling predict() you must fit the model using build()"); Double[][] newx = (Double[][])this.params.get("newdata"); if (newx[0].length != this.nvar) { throw new QSARModelException("Number of independent variables used for prediction must match those used for fitting"); } try { this.modelpredict = (CNNRegressionModelPredict)revaluator.call("predictCNN", new Object[]{ getModelName(), this.params }); } catch (Exception re) { throw new QSARModelException(re.toString()); } } /** * Returns an object summarizing the CNN regression model. * * The return object simply wraps the fields from the summary.nnet * return value. Various details can be extracted from the return object, * See {@link CNNRegressionModelSummary} for more details. * * @return A summary for the CNN regression model * @throws QSARModelException if the model has not been built prior to a call * to this method. */ public CNNRegressionModelSummary summary() throws QSARModelException { if (this.modelfit == null) throw new QSARModelException("Before calling summary() you must fit the model using build()"); CNNRegressionModelSummary s = null; try { s = (CNNRegressionModelSummary)revaluator.call("summaryModel", new Object[]{ getModelName() }); } catch (Exception re) { throw new QSARModelException(re.toString()); } return(s); } /** * Loads a CNNRegresionModel object from disk in to the current session. * * * @param fileName The disk file containing the model * @throws QSARModelException if the model being loaded is not a CNN regression model * object */ public void loadModel(String fileName) throws QSARModelException { // should probably check that the filename does exist Object model = (Object)revaluator.call("loadModel", new Object[]{ (Object)fileName }); String modelName = (String)revaluator.call("loadModel.getName", new Object[] { (Object)fileName }); if (model.getClass().getName().equals("org.openscience.cdk.qsar.model.R.CNNRegressionModelFit")) { this.modelfit = (CNNRegressionModelFit)model; this.setModelName(modelName); Integer tmp = (Integer)revaluator.eval(modelName+"$n[1]"); nvar = tmp.intValue(); } else throw new QSARModelException("The loaded model was not a CNNRegressionModel"); } /** * Loads an CNNRegressionModel object from a serialized string into the current session. * * @param serializedModel A String containing the serialized version of the model * @param modelName A String indicating the name of the model in the R session * @throws QSARModelException if the model being loaded is not a CNN regression model * object */ public void loadModel(String serializedModel, String modelName) throws QSARModelException { // should probably check that the fileName does exist Object model = (Object)revaluator.call("unserializeModel", new Object[]{ (Object)serializedModel, (Object)modelName }); String modelname = modelName; if (model.getClass().getName().equals("org.openscience.cdk.qsar.model.R.CNNRegressionModelFit")) { this.modelfit =(CNNRegressionModelFit)model; this.setModelName(modelname); Double tmp = (Double)revaluator.eval(modelName+"$n[1]"); nvar = (int)tmp.doubleValue(); } else throw new QSARModelException("The loaded model was not a CNNRegressionModel"); } /** * Gets final value of the fitting criteria. * * This method only returns meaningful results if the <code>build</code> * method of this class has been previously called. * * @return A double indicating the value of the fitting criterion plus weight decay term. */ public double getFitValue() { return(this.modelfit.getValue()); } /** * Gets optimized weights for the model. * * This method only returns meaningful results if the <code>build</code> * method of this class has been previously called. * * @return A double[] containing the weights. The number of weights will be * equal to <center>(Ni * Nh) + (Nh * No) + Nh + No</center> where Ni, Nh and No * are the number of input, hidden and output neurons. */ public double[] getFitWeights() { return(this.modelfit.getWeights()); } /** * Gets fitted values from the final model. * * This method only returns meaningful results if the <code>build</code> * method of this class has been previously called. * * @return A double[][] containing the fitted values for each output neuron * in the columns. Note that even if a single output neuron was specified during * model building the return value is still a 2D array (with a single column). */ public double[][] getFitFitted() { return(this.modelfit.getFitted()); } /** * Gets residuals for the fitted values from the final model. * * This method only returns meaningful results if the <code>build</code> * method of this class has been previously called. * * @return A double[][] containing the residuals for each output neuron * in the columns. Note that even if a single output neuron was specified during * model building the return value is still a 2D array (with a single column). */ public double[][] getFitResiduals() { return(this.modelfit.getResiduals()); } /** * Gets the Hessian of the measure of fit. * * If the <code>Hess</code> option was set to TRUE before the call to build * then the CNN routine will return the Hessian of the measure of fit at the best set of * weights found. * This method only returns meaningful results if the <code>build</code> * method of this class has been previously called. * * @return A double[][] containing the Hessian. It will be a square array * with dimensions equal to the Nwt x Nwt, where Nwt is the total number of weights * in the CNN model. */ public double[][] getFitHessian() { return(this.modelfit.getHessian()); } /** * Gets predicted values for new data using a previously built model. * * This method only returns meaningful results if the <code>build</code> * method of this class has been previously called. * * @return A double[][] containing the predicted for each output neuron * in the columns. Note that even if a single output neuron was specified during * model building the return value is still a 2D array (with a single column). */ public double[][] getPredictPredicted() { return(this.modelpredict.getPredicted()); } }