/* * Copyright (C) 2010-2016 JPEXS, All rights reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 3.0 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library. */ package com.jpexs.decompiler.flash.importers.svg; import java.util.ArrayList; import java.util.List; /** * Ported from https://github.com/fontello/cubic2quad * * @author JPEXS, Vitaly Puzrin */ public class CubicToQuad { class Point { public double x; public double y; public Point(double x, double y) { this.x = x; this.y = y; } public Point add(Point point) { return new Point(this.x + point.x, this.y + point.y); } public Point sub(Point point) { return new Point(this.x - point.x, this.y - point.y); } public Point mul(double value) { return new Point(this.x * value, this.y * value); } public Point div(double value) { return new Point(this.x / value, this.y / value); } public double dist() { return Math.sqrt(this.x * this.x + this.y * this.y); } public double sqr() { return this.x * this.x + this.y * this.y; } public double dot(Point point) { return this.x * point.x + this.y * point.y; } } private Point[] calcPowerCoefficients(Point p1, Point c1, Point c2, Point p2) { // point(t) = p1*(1-t)^3 + c1*t*(1-t)^2 + c2*t^2*(1-t) + p2*t^3 = a*t^3 + b*t^2 + c*t + d // for each t value, so // a = (p2 - p1) + 3 * (c1 - c2) // b = 3 * (p1 + c2) - 6 * c1 // c = 3 * (c1 - p1) // d = p1 Point a = p2.sub(p1).add(c1.sub(c2).mul(3)); Point b = p1.add(c2).mul(3).sub(c1.mul(6)); Point c = c1.sub(p1).mul(3); Point d = p1; return new Point[]{a, b, c, d}; } private Point calcPoint(Point a, Point b, Point c, Point d, double t) { // a*t^3 + b*t^2 + c*t + d = ((a*t + b)*t + c)*t + d return a.mul(t).add(b).mul(t).add(c).mul(t).add(d); } private Point calcPointQuad(Point a, Point b, Point c, double t) { // a*t^2 + b*t + c = (a*t + b)*t + c return a.mul(t).add(b).mul(t).add(c); } private Point calcPointDerivative(Point a, Point b, Point c, Point d, double t) { // d/dt[a*t^3 + b*t^2 + c*t + d] = 3*a*t^2 + 2*b*t + c = (3*a*t + 2*b)*t + c return a.mul(3 * t).add(b.mul(2)).mul(t).add(c); } private double[] quadSolve(double a, double b, double c) { // a*x^2 + b*x + c = 0 if (a == 0) { return (b == 0) ? new double[0] : new double[]{-c / b}; } double D = b * b - 4 * a * c; if (D < 0) { return new double[0]; } else if (D == 0) { return new double[]{-b / (2 * a)}; } double DSqrt = Math.sqrt(D); return new double[]{(-b - DSqrt) / (2 * a), (-b + DSqrt) / (2 * a)}; } private double cubicRoot(double x) { return (x < 0) ? -Math.pow(-x, 1 / 3) : Math.pow(x, 1 / 3); } private double[] cubicSolve(double a, double b, double c, double d) { // a*x^3 + b*x^2 + c*x + d = 0 if (a == 0) { return quadSolve(b, c, d); } // solve using Cardan's method, which is described in paper of R.W.D. Nickals // http://www.nickalls.org/dick/papers/maths/cubic1993.pdf (doi:10.2307/3619777) double xn = -b / (3 * a); // point of symmetry x coordinate double yn = ((a * xn + b) * xn + c) * xn + d; // point of symmetry y coordinate double deltaSq = (b * b - 3 * a * c) / (9 * a * a); // delta^2 double hSq = 4 * a * a * Math.pow(deltaSq, 3); // h^2 double D3 = yn * yn - hSq; if (D3 > 0) { // 1 real root double D3Sqrt = Math.sqrt(D3); return new double[]{xn + cubicRoot((-yn + D3Sqrt) / (2 * a)) + cubicRoot((-yn - D3Sqrt) / (2 * a))}; } else if (D3 == 0) { // 2 real roots double delta1 = cubicRoot(yn / (2 * a)); return new double[]{xn - 2 * delta1, xn + delta1}; } // 3 real roots double theta = Math.acos(-yn / Math.sqrt(hSq)) / 3; double delta = Math.sqrt(deltaSq); return new double[]{ xn + 2 * delta * Math.cos(theta), xn + 2 * delta * Math.cos(theta + Math.PI * 2 / 3), xn + 2 * delta * Math.cos(theta + Math.PI * 4 / 3) }; } private double minDistanceToQuad(Point point, Point p1, Point c1, Point p2) { // f(t) = (1-t)^2 * p1 + 2*t*(1 - t) * c1 + t^2 * p2 = a*t^2 + b*t + c, t in [0, 1], // a = p1 + p2 - 2 * c1 // b = 2 * (c1 - p1) // c = p1; a, b, c are vectors because p1, c1, p2 are vectors too // The distance between given point and quadratic curve is equal to // sqrt((f(t) - point)^2), so these expression has zero derivative by t at points where // (f'(t), (f(t) - point)) = 0. // Substituting quadratic curve as f(t) one could obtain a cubic equation // e3*t^3 + e2*t^2 + e1*t + e0 = 0 with following coefficients: // e3 = 2 * a^2 // e2 = 3 * a*b // e1 = (b^2 + 2 * a*(c - point)) // e0 = (c - point)*b // One of the roots of the equation from [0, 1], or t = 0 or t = 1 is a value of t // at which the distance between given point and quadratic Bezier curve has minimum. // So to find the minimal distance one have to just pick the minimum value of // the distance on set {t = 0 | t = 1 | t is root of the equation from [0, 1] }. Point a = p1.add(p2).sub(c1.mul(2)); Point b = c1.sub(p1).mul(2); Point c = p1; double e3 = 2 * a.sqr(); double e2 = 3 * a.dot(b); double e1 = (b.sqr() + 2 * a.dot(c.sub(point))); double e0 = c.sub(point).dot(b); double[] solveResult = cubicSolve(e3, e2, e1, e0); List<Double> candidates = new ArrayList<>(); for (double t : solveResult) { if (t > 0 && t < 1) { candidates.add(t); } } candidates.add(0d); candidates.add(1d); double minDistance = 1e9; for (int i = 0; i < candidates.size(); i++) { double distance = calcPointQuad(a, b, c, candidates.get(i)).sub(point).dist(); if (distance < minDistance) { minDistance = distance; } } return minDistance; } private Point[] processSegment(Point a, Point b, Point c, Point d, double t1, double t2) { // Find a single control point for given segment of cubic Bezier curve // These control point is an interception of tangent lines to the boundary points // Let's denote that f(t) is a vector function of parameter t that defines the cubic Bezier curve, // f(t1) + f'(t1)*z1 is a parametric equation of tangent line to f(t1) with parameter z1 // f(t2) + f'(t2)*z2 is the same for point f(t2) and the vector equation // f(t1) + f'(t1)*z1 = f(t2) + f'(t2)*z2 defines the values of parameters z1 and z2. // Defining fx(t) and fy(t) as the x and y components of vector function f(t) respectively // and solving the given system for z1 one could obtain that // // -(fx(t2) - fx(t1))*fy'(t2) + (fy(t2) - fy(t1))*fx'(t2) // z1 = ------------------------------------------------------. // -fx'(t1)*fy'(t2) + fx'(t2)*fy'(t1) // // Let's assign letter D to the denominator and note that if D = 0 it means that the curve actually // is a line. Substituting z1 to the equation of tangent line to the point f(t1), one could obtain that // cx = [fx'(t1)*(fy(t2)*fx'(t2) - fx(t2)*fy'(t2)) + fx'(t2)*(fx(t1)*fy'(t1) - fy(t1)*fx'(t1))]/D // cy = [fy'(t1)*(fy(t2)*fx'(t2) - fx(t2)*fy'(t2)) + fy'(t2)*(fx(t1)*fy'(t1) - fy(t1)*fx'(t1))]/D // where c = (cx, cy) is the control point of quadratic Bezier curve. Point f1 = calcPoint(a, b, c, d, t1); Point f2 = calcPoint(a, b, c, d, t2); Point f1_ = calcPointDerivative(a, b, c, d, t1); Point f2_ = calcPointDerivative(a, b, c, d, t2); double D = -f1_.x * f2_.y + f2_.x * f1_.y; if (Math.abs(D) < 1e-8) { return new Point[]{f1, f1.add(f2).div(2), f2}; // straight line segment } double cx = (f1_.x * (f2.y * f2_.x - f2.x * f2_.y) + f2_.x * (f1.x * f1_.y - f1.y * f1_.x)) / D; double cy = (f1_.y * (f2.y * f2_.x - f2.x * f2_.y) + f2_.y * (f1.x * f1_.y - f1.y * f1_.x)) / D; return new Point[]{f1, new Point(cx, cy), f2}; } private boolean isSegmentApproximationClose(Point a, Point b, Point c, Point d, double tmin, double tmax, Point p1, Point c1, Point p2, double errorBound) { // a,b,c,d define cubic curve // tmin, tmax are boundary points on cubic curve // p1, c1, p2 define quadratic curve // errorBound is maximum allowed distance // Try to find maximum distance between one of N points segment of given cubic // and corresponding quadratic curve that estimates the cubic one, assuming // that the boundary points of cubic and quadratic points are equal. // // The distance calculation method comes from Hausdorff distance defenition // (https://en.wikipedia.org/wiki/Hausdorff_distance), but with following simplifications // * it looks for maximum distance only for finite number of points of cubic curve // * it doesn't perform reverse check that means selecting set of fixed points on // the quadratic curve and looking for the closest points on the cubic curve // But this method allows easy estimation of approximation error, so it is enough // for practical purposes. int n = 10; // number of points + 1 double dt = (tmax - tmin) / n; for (double t = tmin + dt; t < tmax - dt; t += dt) { // don't check distance on boundary points // because they should be the same Point point = calcPoint(a, b, c, d, t); if (minDistanceToQuad(point, p1, c1, p2) > errorBound) { return false; } } return true; } private boolean _isApproximationClose(Point a, Point b, Point c, Point d, List<Point[]> quadCurves, double errorBound) { double dt = 1.0 / quadCurves.size(); for (int i = 0; i < quadCurves.size(); i++) { Point p1 = quadCurves.get(i)[0]; Point c1 = quadCurves.get(i)[1]; Point p2 = quadCurves.get(i)[2]; if (!isSegmentApproximationClose(a, b, c, d, i * dt, (i + 1) * dt, p1, c1, p2, errorBound)) { return false; } } return true; } private List<Point[]> fromFlatArray(double[] points) { List<Point[]> result = new ArrayList<>(); int segmentsNumber = (points.length - 2) / 4; for (int i = 0; i < segmentsNumber; i++) { result.add(new Point[]{ new Point(points[4 * i], points[4 * i + 1]), new Point(points[4 * i + 2], points[4 * i + 3]), new Point(points[4 * i + 4], points[4 * i + 5]) }); } return result; } private List<Double> toFlatArray(List<Point[]> quadsList) { List<Double> result = new ArrayList<>(); result.add(quadsList.get(0)[0].x); result.add(quadsList.get(0)[0].y); for (int i = 0; i < quadsList.size(); i++) { result.add(quadsList.get(i)[1].x); result.add(quadsList.get(i)[1].y); result.add(quadsList.get(i)[2].x); result.add(quadsList.get(i)[2].y); } return result; } private boolean isApproximationClose(double p1x, double p1y, double c1x, double c1y, double c2x, double c2y, double p2x, double p2y, double[] quads, double errorBound) { // TODO: rewrite it in C-style and remove _isApproximationClose Point[] pc = calcPowerCoefficients( new Point(p1x, p1y), new Point(c1x, c1y), new Point(c2x, c2y), new Point(p2x, p2y) ); return _isApproximationClose(pc[0], pc[1], pc[2], pc[3], fromFlatArray(quads), errorBound); } /* * Approximate cubic Bezier curve defined with base points p1, p2 and control points c1, c2 with * with a few quadratic Bezier curves. * The function uses tangent method to find quadratic approximation of cubic curve segment and * simplified Hausdorff distance to determine number of segments that is enough to make error small. * In general the method is the same as described here: https://fontforge.github.io/bezier.html. */ public List<Double> cubicToQuad(double p1x, double p1y, double c1x, double c1y, double c2x, double c2y, double p2x, double p2y, double errorBound) { Point p1 = new Point(p1x, p1y); Point c1 = new Point(c1x, c1y); Point c2 = new Point(c2x, c2y); Point p2 = new Point(p2x, p2y); Point[] pc = calcPowerCoefficients(p1, c1, c2, p2); Point a = pc[0], b = pc[1], c = pc[2], d = pc[3]; List<Point[]> approximation = new ArrayList<>(); for (int segmentsCount = 1; segmentsCount <= 8; segmentsCount++) { approximation.clear(); for (double t = 0; t < 1; t += 1.0 / segmentsCount) { approximation.add(processSegment(a, b, c, d, t, t + 1.0 / segmentsCount)); } if (segmentsCount == 1 && (approximation.get(0)[1].sub(p1).dot(c1.sub(p1)) < 0 || approximation.get(0)[1].sub(p2).dot(c2.sub(p2)) < 0)) { // approximation concave, while the curve is convex (or vice versa) continue; } if (_isApproximationClose(a, b, c, d, approximation, errorBound)) { break; } } return toFlatArray(approximation); } }