/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package io.hops.erasure_coding; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import java.util.Arrays; import java.util.Set; public class ReedSolomonCode extends ErasureCode { public static final Log LOG = LogFactory.getLog(ReedSolomonCode.class); private int stripeSize; private int paritySize; private int[] generatingPolynomial; private int PRIMITIVE_ROOT = 2; private int[] primitivePower; private GaloisField GF = GaloisField.getInstance(); private int[] errSignature; private int[] paritySymbolLocations; private int[] dataBuff; @Deprecated public ReedSolomonCode(int stripeSize, int paritySize) { init(stripeSize, paritySize); } public ReedSolomonCode() { } @Override public void init(Codec codec) { init(codec.stripeLength, codec.parityLength); LOG.info("Initialized " + ReedSolomonCode.class + " stripeLength:" + codec.stripeLength + " parityLength:" + codec.parityLength); } private void init(int stripeSize, int paritySize) { assert (stripeSize + paritySize < GF.getFieldSize()); this.stripeSize = stripeSize; this.paritySize = paritySize; this.errSignature = new int[paritySize]; this.paritySymbolLocations = new int[paritySize]; this.dataBuff = new int[paritySize + stripeSize]; for (int i = 0; i < paritySize; i++) { paritySymbolLocations[i] = i; } this.primitivePower = new int[stripeSize + paritySize]; // compute powers of the primitive root for (int i = 0; i < stripeSize + paritySize; i++) { primitivePower[i] = GF.power(PRIMITIVE_ROOT, i); } // compute generating polynomial int[] gen = {1}; int[] poly = new int[2]; for (int i = 0; i < paritySize; i++) { poly[0] = primitivePower[i]; poly[1] = 1; gen = GF.multiply(gen, poly); } // generating polynomial has all generating roots generatingPolynomial = gen; } @Override public void encode(int[] message, int[] parity) { assert (message.length == stripeSize && parity.length == paritySize); for (int i = 0; i < paritySize; i++) { dataBuff[i] = 0; } for (int i = 0; i < stripeSize; i++) { dataBuff[i + paritySize] = message[i]; } GF.remainder(dataBuff, generatingPolynomial); for (int i = 0; i < paritySize; i++) { parity[i] = dataBuff[i]; } } /** * This function (actually, the GF.remainder() function) will modify * the "inputs" parameter. */ @Override public void encodeBulk(byte[][] inputs, byte[][] outputs) { final int stripeSize = stripeSize(); final int paritySize = paritySize(); assert (stripeSize == inputs.length); assert (paritySize == outputs.length); for (int i = 0; i < outputs.length; i++) { Arrays.fill(outputs[i], (byte) 0); } byte[][] data = new byte[stripeSize + paritySize][]; for (int i = 0; i < paritySize; i++) { data[i] = outputs[i]; } for (int i = 0; i < stripeSize; i++) { data[i + paritySize] = inputs[i]; } // Compute the remainder GF.remainder(data, generatingPolynomial); } @Override public void decode(int[] data, int[] erasedLocations, int[] erasedValues) { if (erasedLocations.length == 0) { return; } assert (erasedLocations.length == erasedValues.length); for (int i = 0; i < erasedLocations.length; i++) { data[erasedLocations[i]] = 0; } for (int i = 0; i < erasedLocations.length; i++) { errSignature[i] = primitivePower[erasedLocations[i]]; erasedValues[i] = GF.substitute(data, primitivePower[i]); } GF.solveVandermondeSystem(errSignature, erasedValues, erasedLocations.length); } @Override public void decode(int[] data, int[] erasedLocations, int[] erasedValues, int[] locationsToRead, int[] locationsNotToRead) { /* * Pretend that all locations in locationsNotToRead are * erased and try to repair them. */ int[] recovValue = new int[locationsNotToRead.length]; decode(data, locationsNotToRead, recovValue); /* * Among the recovered values corresponding to locationsNotToRead * copy those corresponding to erasedLocation into erasedValue. */ for (int i = 0; i < erasedLocations.length; i++) { for (int j = 0; j < locationsNotToRead.length; j++) { if (erasedLocations[i] == locationsNotToRead[j]) { erasedValues[i] = recovValue[j]; break; } } } } public void decodeBulk(byte[][] readBufs, byte[][] writeBufs, int[] erasedLocation) { if (erasedLocation.length == 0) { return; } // cleanup the write buffer for (int i = 0; i < writeBufs.length; i++) { Arrays.fill(writeBufs[i], (byte) 0); } for (int i = 0; i < erasedLocation.length; i++) { errSignature[i] = primitivePower[erasedLocation[i]]; GF.substitute(readBufs, writeBufs[i], primitivePower[i]); } GF.solveVandermondeSystem(errSignature, writeBufs, erasedLocation.length, readBufs[0].length); } /** * This method would be overridden in the subclass, * so that the subclass will have its own decodeBulk behavior. */ @Override public void decodeBulk(byte[][] readBufs, byte[][] writeBufs, int[] erasedLocations, int[] locationsToRead, int[] locationsNotToRead) { int[] tmpInput = new int[readBufs.length]; int[] tmpOutput = new int[erasedLocations.length]; int numBytes = readBufs[0].length; for (int idx = 0; idx < numBytes; idx++) { for (int i = 0; i < tmpOutput.length; i++) { tmpOutput[i] = 0; } for (int i = 0; i < tmpInput.length; i++) { tmpInput[i] = readBufs[i][idx] & 0x000000FF; } decode(tmpInput, erasedLocations, tmpOutput, locationsToRead, locationsNotToRead); for (int i = 0; i < tmpOutput.length; i++) { writeBufs[i][idx] = (byte) tmpOutput[i]; } } } @Override public int stripeSize() { return this.stripeSize; } @Override public int paritySize() { return this.paritySize; } @Override public int symbolSize() { return (int) Math.round(Math.log(GF.getFieldSize()) / Math.log(2)); } /** * Given parity symbols followed by message symbols, return the locations of * symbols that are corrupted. Can resolve up to (parity length / 2) error * locations. * * @param data * The message and parity. The parity should be placed in the * first part of the array. In each integer, the relevant portion * is present in the least significant bits of each int. * The number of elements in data is stripeSize() + paritySize(). * <b>Note that data may be changed after calling this method.</b> * @param errorLocations * The set to put the error location results * @return true If the locations can be resolved, return true. */ public boolean computeErrorLocations(int[] data, Set<Integer> errorLocations) { assert (data.length == paritySize + stripeSize && errorLocations != null); errorLocations.clear(); int maxError = paritySize / 2; int[][] syndromeMatrix = new int[maxError][]; for (int i = 0; i < syndromeMatrix.length; ++i) { syndromeMatrix[i] = new int[maxError + 1]; } int[] syndrome = new int[paritySize]; if (computeSyndrome(data, syndrome)) { // Parity check OK. No error location added. return true; } for (int i = 0; i < maxError; ++i) { for (int j = 0; j < maxError + 1; ++j) { syndromeMatrix[i][j] = syndrome[i + j]; } } GF.gaussianElimination(syndromeMatrix); int[] polynomial = new int[maxError + 1]; polynomial[0] = 1; for (int i = 0; i < maxError; ++i) { polynomial[i + 1] = syndromeMatrix[maxError - 1 - i][maxError]; } for (int i = 0; i < paritySize + stripeSize; ++i) { int possibleRoot = GF.divide(1, primitivePower[i]); if (GF.substitute(polynomial, possibleRoot) == 0) { errorLocations.add(i); } } // Now recover with error locations and check the syndrome again int[] locations = new int[errorLocations.size()]; int k = 0; for (int loc : errorLocations) { locations[k++] = loc; } int[] erasedValue = new int[locations.length]; decode(data, locations, erasedValue); for (int i = 0; i < locations.length; ++i) { data[locations[i]] = erasedValue[i]; } return computeSyndrome(data, syndrome); } /** * Compute the syndrome of the input [parity, message] * * @param data * [parity, message] * @param syndrome * The syndromes (checksums) of the data * @return true If syndromes are all zeros */ private boolean computeSyndrome(int[] data, int[] syndrome) { boolean corruptionFound = false; for (int i = 0; i < paritySize; i++) { syndrome[i] = GF.substitute(data, primitivePower[i]); if (syndrome[i] != 0) { corruptionFound = true; } } return !corruptionFound; } }