/* * Copyright 2009 Google Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); you may not * use this file except in compliance with the License. You may obtain a copy of * the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations under * the License. */ /* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with this * work for additional information regarding copyright ownership. The ASF * licenses this file to You under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations under * the License. * * INCLUDES MODIFICATIONS BY RICHARD ZSCHECH AS WELL AS GOOGLE. */ package java.math; import com.google.gwt.core.client.JavaScriptObject; import java.io.Serializable; /** * This class represents immutable arbitrary precision decimal numbers. Each * {@code BigDecimal} instance is represented with a unscaled arbitrary * precision mantissa (the unscaled value) and a scale. The value of the {@code * BigDecimal} is {@code unscaledValue} 10^(-{@code scale}). */ public class BigDecimal extends Number implements Comparable<BigDecimal>, Serializable { /** * One more than the number of bits which can be stored in {@link #smallValue}. */ private static final int SMALL_VALUE_BITS = 54; /** * The constant one as a {@code BigDecimal}. */ public static final BigDecimal ONE = new BigDecimal(1, 0); /** * Rounding mode to round towards positive infinity. For positive values this * rounding mode behaves as {@link #ROUND_UP}, for negative values as * {@link #ROUND_DOWN}. * * @see RoundingMode#CEILING */ public static final int ROUND_CEILING = 2; /** * Rounding mode where the values are rounded towards zero. * * @see RoundingMode#DOWN */ public static final int ROUND_DOWN = 1; /** * Rounding mode to round towards negative infinity. For positive values this * rounding mode behaves as {@link #ROUND_DOWN}, for negative values as * {@link #ROUND_UP}. * * @see RoundingMode#FLOOR */ public static final int ROUND_FLOOR = 3; /** * Rounding mode where values are rounded towards the nearest neighbor. Ties * are broken by rounding down. * * @see RoundingMode#HALF_DOWN */ public static final int ROUND_HALF_DOWN = 5; /** * Rounding mode where values are rounded towards the nearest neighbor. Ties * are broken by rounding to the even neighbor. * * @see RoundingMode#HALF_EVEN */ public static final int ROUND_HALF_EVEN = 6; /** * Rounding mode where values are rounded towards the nearest neighbor. Ties * are broken by rounding up. * * @see RoundingMode#HALF_UP */ public static final int ROUND_HALF_UP = 4; /** * Rounding mode where the rounding operations throws an {@code * ArithmeticException} for the case that rounding is necessary, i.e. for the * case that the value cannot be represented exactly. * * @see RoundingMode#UNNECESSARY */ public static final int ROUND_UNNECESSARY = 7; /** * Rounding mode where positive values are rounded towards positive infinity * and negative values towards negative infinity. * * @see RoundingMode#UP */ public static final int ROUND_UP = 0; /** * The constant ten as a {@code BigDecimal}. */ public static final BigDecimal TEN = new BigDecimal(10, 0); /** * The constant zero as a {@code BigDecimal}. */ public static final BigDecimal ZERO = new BigDecimal(0, 0); protected static JavaScriptObject unscaledRegex; private static final int BI_SCALED_BY_ZERO_LENGTH = 11; /** * An array with the first <code>BigInteger</code> scaled by zero. ( * <code>[0,0],[1,0],...,[10,0]</code>). */ private static final BigDecimal BI_SCALED_BY_ZERO[] = new BigDecimal[BI_SCALED_BY_ZERO_LENGTH]; /** * An array filled with characters <code>'0'</code>. */ private static final char[] CH_ZEROS = new char[100]; private static final double[] DOUBLE_FIVE_POW = new double[] { 1D, 5D, 25D, 125D, 625D, 3125D, 15625D, 78125D, 390625D, 1953125D, 9765625D, 48828125D, 244140625D, 1220703125D, 6103515625D, 30517578125D, 152587890625D, 762939453125D, 3814697265625D, 19073486328125D, 95367431640625D, 476837158203125D, 2384185791015625D,}; private static final int[] DOUBLE_FIVE_POW_BIT_LENGTH = new int[DOUBLE_FIVE_POW.length]; /** * An array with powers of ten that fit in the type <code>double</code> ( * <code>10^0,10^1,...,10^18</code>). */ private static final double[] DOUBLE_TEN_POW = new double[] { 1D, 10D, 100D, 1000D, 10000D, 100000D, 1000000D, 10000000D, 100000000D, 1000000000D, 10000000000D, 100000000000D, 1000000000000D, 10000000000000D, 100000000000000D, 1000000000000000D, 10000000000000000D,}; private static final int[] DOUBLE_TEN_POW_BIT_LENGTH = new int[DOUBLE_TEN_POW.length]; /** * An array with powers of five that fit in the type <code>double</code> ( * <code>5^0,5^1,...,5^27</code>). */ private static final BigInteger FIVE_POW[]; /** * The double closest to <code>Math.log(2.0d)</code>. */ private static final double LOG2 = 0.6931471805599453d; /** * The double closest to <code>Log10(2)</code>. */ private static final double LOG10_2 = 0.3010299956639812; /** * The double closer to <code>Math.pow(2, 47)</code>. */ private static final double POW47 = 140737488355328d; /** * This is the serialVersionUID used by the sun implementation. */ private static final long serialVersionUID = 6108874887143696463L; /** * An array with powers of ten that fit in the type <code>double</code> ( * <code>10^0,10^1,...,10^18</code>). */ private static final BigInteger TEN_POW[]; /** * An array with the zero number scaled by the first positive scales. ( * <code>0*10^0, 0*10^1, ..., 0*10^10</code>). */ private static final BigDecimal ZERO_SCALED_BY[] = new BigDecimal[11]; static { // To fill all static arrays. int i = 0; for (; i < ZERO_SCALED_BY.length; i++) { BI_SCALED_BY_ZERO[i] = new BigDecimal(i, 0); ZERO_SCALED_BY[i] = new BigDecimal(0, i); CH_ZEROS[i] = '0'; } for (; i < CH_ZEROS.length; i++) { CH_ZEROS[i] = '0'; } for (int j = 0; j < DOUBLE_FIVE_POW_BIT_LENGTH.length; j++) { DOUBLE_FIVE_POW_BIT_LENGTH[j] = bitLength(DOUBLE_FIVE_POW[j]); } for (int j = 0; j < DOUBLE_TEN_POW_BIT_LENGTH.length; j++) { DOUBLE_TEN_POW_BIT_LENGTH[j] = bitLength(DOUBLE_TEN_POW[j]); } // Taking the references of useful powers. TEN_POW = Multiplication.bigTenPows; FIVE_POW = Multiplication.bigFivePows; } /** * Returns a new {@code BigDecimal} instance whose value is equal to {@code * val}. The new decimal is constructed as if the {@code BigDecimal(String)} * constructor is called with an argument which is equal to {@code * Double.toString(val)}. For example, {@code valueOf("0.1")} is converted to * (unscaled=1, scale=1), although the double {@code 0.1} cannot be * represented exactly as a double value. In contrast to that, a new {@code * BigDecimal(0.1)} instance has the value {@code * 0.1000000000000000055511151231257827021181583404541015625} with an unscaled * value {@code 1000000000000000055511151231257827021181583404541015625} and * the scale {@code 55}. * * @param val double value to be converted to a {@code BigDecimal}. * @return {@code BigDecimal} instance with the value {@code val}. * @throws NumberFormatException if {@code val} is infinite or {@code val} is * not a number */ public static BigDecimal valueOf(double val) { if (Double.isInfinite(val) || Double.isNaN(val)) { // math.03=Infinity or NaN throw new NumberFormatException("Infinite or NaN"); //$NON-NLS-1$ } return new BigDecimal(Double.toString(val)); } /** * Returns a new {@code BigDecimal} instance whose value is equal to {@code * unscaledVal}. The scale of the result is {@code 0}, and its unscaled value * is {@code unscaledVal}. * * @param unscaledVal value to be converted to a {@code BigDecimal}. * @return {@code BigDecimal} instance with the value {@code unscaledVal}. */ public static BigDecimal valueOf(long unscaledVal) { if ((unscaledVal >= 0) && (unscaledVal < BI_SCALED_BY_ZERO_LENGTH)) { return BI_SCALED_BY_ZERO[(int) unscaledVal]; } return new BigDecimal(unscaledVal, 0); } /** * Returns a new {@code BigDecimal} instance whose value is equal to {@code * unscaledVal} 10^(-{@code scale}). The scale of the result is {@code scale}, * and its unscaled value is {@code unscaledVal}. * * @param unscaledVal unscaled value to be used to construct the new {@code * BigDecimal}. * @param scale scale to be used to construct the new {@code BigDecimal}. * @return {@code BigDecimal} instance with the value {@code unscaledVal}* * 10^(-{@code unscaledVal}). */ public static BigDecimal valueOf(long unscaledVal, int scale) { if (scale == 0) { return valueOf(unscaledVal); } if ((unscaledVal == 0) && (scale >= 0) && (scale < ZERO_SCALED_BY.length)) { return ZERO_SCALED_BY[scale]; } return new BigDecimal(unscaledVal, scale); } private static BigDecimal addAndMult10(BigDecimal thisValue, BigDecimal augend, double diffScale) { if (diffScale < DOUBLE_TEN_POW.length && Math.max(thisValue.bitLength, augend.bitLength + DOUBLE_TEN_POW_BIT_LENGTH[(int) diffScale]) + 1 < SMALL_VALUE_BITS) { return valueOf(thisValue.smallValue + augend.smallValue * DOUBLE_TEN_POW[(int) diffScale], thisValue.scale); } return new BigDecimal(thisValue.getUnscaledValue().add( Multiplication.multiplyByTenPow(augend.getUnscaledValue(), (int) diffScale)), thisValue.scale); } private static int bitLength(double value) { // if |value| is less than 2^47, use log if (value > -POW47 && value < POW47) { if (value == 0.0) { // special-case zero, otherwise we get -INFINITY below return 0; } boolean negative = (value < 0.0); if (negative) { value = -value; } int result = (int) Math.floor(Math.log(value) / LOG2); if (!negative || value != Math.pow(2, result)) { result++; } return result; } return bitLength((long) value); } private static int bitLength(long value) { if (value < 0) { value = ~value; } return 64 - Long.numberOfLeadingZeros(value); } private static BigDecimal divideBigIntegers(BigInteger scaledDividend, BigInteger scaledDivisor, int scale, RoundingMode roundingMode) { BigInteger[] quotAndRem = scaledDividend.divideAndRemainder(scaledDivisor); // quotient // and // remainder // If after division there is a remainder... BigInteger quotient = quotAndRem[0]; BigInteger remainder = quotAndRem[1]; if (remainder.signum() == 0) { return new BigDecimal(quotient, scale); } int sign = scaledDividend.signum() * scaledDivisor.signum(); int compRem; // 'compare to remainder' if (scaledDivisor.bitLength() < SMALL_VALUE_BITS) { long rem = remainder.longValue(); long divisor = scaledDivisor.longValue(); compRem = longCompareTo(Math.abs(rem) << 1, Math.abs(divisor)); // To look if there is a carry compRem = roundingBehavior(quotient.testBit(0) ? 1 : 0, sign * (5 + compRem), roundingMode); } else { // Checking if: remainder * 2 >= scaledDivisor compRem = remainder.abs().shiftLeftOneBit().compareTo(scaledDivisor.abs()); compRem = roundingBehavior(quotient.testBit(0) ? 1 : 0, sign * (5 + compRem), roundingMode); } if (compRem != 0) { if (quotient.bitLength() < SMALL_VALUE_BITS) { return valueOf(quotient.longValue() + compRem, scale); } quotient = quotient.add(BigInteger.valueOf(compRem)); return new BigDecimal(quotient, scale); } // Constructing the result with the appropriate unscaled value return new BigDecimal(quotient, scale); } private static BigDecimal dividePrimitiveDoubles(double scaledDividend, double scaledDivisor, int scale, RoundingMode roundingMode) { double quotient = intDivide(scaledDividend, scaledDivisor); double remainder = scaledDividend % scaledDivisor; int sign = Double.compare(scaledDividend * scaledDivisor, 0.0); if (remainder != 0) { // Checking if: remainder * 2 >= scaledDivisor int compRem; // 'compare to remainder' compRem = Double.compare(Math.abs(remainder) * 2, Math.abs(scaledDivisor)); // To look if there is a carry quotient += roundingBehavior(((int) quotient) & 1, sign * (5 + compRem), roundingMode); } // Constructing the result with the appropriate unscaled value return valueOf(quotient, scale); } private static double intDivide(double dividend, double divisor) { double quotient = dividend / divisor; return quotient > 0 ? Math.floor(quotient) : Math.ceil(quotient); } private static int longCompareTo(long a, long b) { return Long.signum(a - b); } private static native double parseUnscaled(String str) /*-{ var unscaledRegex = @java.math.BigDecimal::unscaledRegex; if (!unscaledRegex) { unscaledRegex = @java.math.BigDecimal::unscaledRegex = /^[+-]?\d*$/i; } if (unscaledRegex.test(str)) { return parseInt(str, 10); } else { return Number.NaN; } }-*/; /** * Return an increment that can be -1,0 or 1, depending of {@code * roundingMode}. * * @param parityBit can be 0 or 1, it's only used in the case {@code * HALF_EVEN} * @param fraction the mantisa to be analyzed * @param roundingMode the type of rounding * @return the carry propagated after rounding */ private static int roundingBehavior(int parityBit, int fraction, RoundingMode roundingMode) { int increment = 0; // the carry after rounding switch (roundingMode) { case UNNECESSARY: if (fraction != 0) { // math.08=Rounding necessary throw new ArithmeticException("Rounding necessary"); //$NON-NLS-1$ } break; case UP: increment = Integer.signum(fraction); break; case DOWN: break; case CEILING: increment = Math.max(Integer.signum(fraction), 0); break; case FLOOR: increment = Math.min(Integer.signum(fraction), 0); break; case HALF_UP: if (Math.abs(fraction) >= 5) { increment = Integer.signum(fraction); } break; case HALF_DOWN: if (Math.abs(fraction) > 5) { increment = Integer.signum(fraction); } break; case HALF_EVEN: if (Math.abs(fraction) + parityBit > 5) { increment = Integer.signum(fraction); } break; } return increment; } /** * It tests if a scale of type {@code long} fits in 32 bits. It returns the * same scale being casted to {@code int} type when is possible, otherwise * throws an exception. * * @param doubleScale a double bit scale * @return a 32 bit scale when is possible * @throws ArithmeticException when {@code scale} doesn't fit in {@code int} * type * @see #scale */ private static int toIntScale(double doubleScale) { if (doubleScale < Integer.MIN_VALUE) { // math.09=Overflow throw new ArithmeticException("Overflow"); //$NON-NLS-1$ } else if (doubleScale > Integer.MAX_VALUE) { // math.0A=Underflow throw new ArithmeticException("Underflow"); //$NON-NLS-1$ } else { return (int) doubleScale; } } /** * Convert a double to a string with {@code digits} precision. The resulting * string may still be in exponential notation. * * @param d double value * @param digits number of digits of precision to include * @return non-localized string representation of {@code d} */ private static native String toPrecision(double d, int digits) /*-{ return d.toPrecision(digits); }-*/; private static BigDecimal valueOf(double smallValue, double scale) { return new BigDecimal(smallValue, scale); } /** * It returns the value 0 with the most approximated scale of type {@code int} * . if {@code longScale > Integer.MAX_VALUE} the scale will be {@code * Integer.MAX_VALUE}; if {@code longScale < Integer.MIN_VALUE} the scale will * be {@code Integer.MIN_VALUE}; otherwise {@code longScale} is casted to the * type {@code int}. * * @param doubleScale the scale to which the value 0 will be scaled. * @return the value 0 scaled by the closer scale of type {@code int}. * @see #scale */ private static BigDecimal zeroScaledBy(double doubleScale) { if (doubleScale == (int) doubleScale) { return valueOf(0, (int) doubleScale); } if (doubleScale >= 0) { return new BigDecimal(0, Integer.MAX_VALUE); } return new BigDecimal(0, Integer.MIN_VALUE); } private transient int bitLength; /** * Cache for the hash code. */ private transient int hashCode; /** * The arbitrary precision integer (unscaled value) in the internal * representation of {@code BigDecimal}. */ private BigInteger intVal; /** * Represent the number of decimal digits in the unscaled value. This * precision is calculated the first time, and used in the following calls of * method <code>precision()</code>. Note that some call to the private method * <code>inplaceRound()</code> could update this field. * * @see #precision() * @see #inplaceRound(MathContext) */ private transient int precision; private double scale; /** * The unscaled integer value (stored in a double) if the number of bits is * less than {@link #SMALL_VALUE_BITS}. */ private transient double smallValue; /** * The <code>String</code> representation is cached. */ private transient String toStringImage; /** * Constructs a new {@code BigDecimal} instance from the given big integer * {@code val}. The scale of the result is {@code 0}. * * @param val {@code BigInteger} value to be converted to a {@code BigDecimal} * instance. */ public BigDecimal(BigInteger val) { this(val, 0); } /** * Constructs a new {@code BigDecimal} instance from a given unscaled value * {@code unscaledVal} and a given scale. The value of this instance is * {@code unscaledVal} 10^(-{@code scale}). * * @param unscaledVal {@code BigInteger} representing the unscaled value of * this {@code BigDecimal} instance. * @param scale scale of this {@code BigDecimal} instance. * @throws NullPointerException if {@code unscaledVal == null}. */ public BigDecimal(BigInteger unscaledVal, int scale) { if (unscaledVal == null) { throw new NullPointerException(); } this.scale = scale; setUnscaledValue(unscaledVal); } /** * Constructs a new {@code BigDecimal} instance from a given unscaled value * {@code unscaledVal} and a given scale. The value of this instance is * {@code unscaledVal} 10^(-{@code scale}). The result is rounded according to * the specified math context. * * @param unscaledVal {@code BigInteger} representing the unscaled value of * this {@code BigDecimal} instance. * @param scale scale of this {@code BigDecimal} instance. * @param mc rounding mode and precision for the result of this operation. * @throws ArithmeticException if {@code mc.precision > 0} and {@code * mc.roundingMode == UNNECESSARY} and the new big decimal cannot be * represented within the given precision without rounding. * @throws NullPointerException if {@code unscaledVal == null}. */ public BigDecimal(BigInteger unscaledVal, int scale, MathContext mc) { this(unscaledVal, scale); inplaceRound(mc); } /** * Constructs a new {@code BigDecimal} instance from the given big integer * {@code val}. The scale of the result is {@code 0}. * * @param val {@code BigInteger} value to be converted to a {@code BigDecimal} * instance. * @param mc rounding mode and precision for the result of this operation. * @throws ArithmeticException if {@code mc.precision > 0} and {@code * mc.roundingMode == UNNECESSARY} and the new big decimal cannot be * represented within the given precision without rounding. */ public BigDecimal(BigInteger val, MathContext mc) { this(val); inplaceRound(mc); } /** * Constructs a new {@code BigDecimal} instance from a string representation * given as a character array. * * @param in array of characters containing the string representation of this * {@code BigDecimal}. * @throws NullPointerException if {@code in == null}. * @throws NumberFormatException if {@code in} does not contain a valid string * representation of a big decimal. */ public BigDecimal(char[] in) { this(in, 0, in.length); } /** * Constructs a new {@code BigDecimal} instance from a string representation * given as a character array. * * @param in array of characters containing the string representation of this * {@code BigDecimal}. * @param offset first index to be copied. * @param len number of characters to be used. * @throws NullPointerException if {@code in == null}. * @throws NumberFormatException if {@code offset < 0} or {@code len <= 0} or * {@code offset+len-1 < 0} or {@code offset+len-1 >= in.length}. * @throws NumberFormatException if in does not contain a valid string * representation of a big decimal. */ public BigDecimal(char[] in, int offset, int len) { try { initFrom(new String(in, offset, len)); } catch (StringIndexOutOfBoundsException e) { throw new NumberFormatException(e.getMessage()); } } /** * Constructs a new {@code BigDecimal} instance from a string representation * given as a character array. * * @param in array of characters containing the string representation of this * {@code BigDecimal}. * @param offset first index to be copied. * @param len number of characters to be used. * @param mc rounding mode and precision for the result of this operation. * @throws NullPointerException if {@code in == null}. * @throws NumberFormatException if {@code offset < 0} or {@code len <= 0} or * {@code offset+len-1 < 0} or {@code offset+len-1 >= in.length}. * @throws NumberFormatException if {@code in} does not contain a valid string * representation of a big decimal. * @throws ArithmeticException if {@code mc.precision > 0} and {@code * mc.roundingMode == UNNECESSARY} and the new big decimal cannot be * represented within the given precision without rounding. */ public BigDecimal(char[] in, int offset, int len, MathContext mc) { this(in, offset, len); inplaceRound(mc); } /** * Constructs a new {@code BigDecimal} instance from a string representation * given as a character array. The result is rounded according to the * specified math context. * * @param in array of characters containing the string representation of this * {@code BigDecimal}. * @param mc rounding mode and precision for the result of this operation. * @throws NullPointerException if {@code in == null}. * @throws NumberFormatException if {@code in} does not contain a valid string * representation of a big decimal. * @throws ArithmeticException if {@code mc.precision > 0} and {@code * mc.roundingMode == UNNECESSARY} and the new big decimal cannot be * represented within the given precision without rounding. */ public BigDecimal(char[] in, MathContext mc) { this(in, 0, in.length); inplaceRound(mc); } /** * Constructs a new {@code BigDecimal} instance from the given double {@code * val}. The scale of the result is 0. * * @param val double value to be converted to a {@code BigDecimal} instance. * @throws NumberFormatException if {@code val} is infinite or a NaN */ public BigDecimal(double val) { if (Double.isInfinite(val) || Double.isNaN(val)) { // math.03=Infinity or NaN throw new NumberFormatException("Infinite or NaN"); //$NON-NLS-1$ } initFrom(toPrecision(val, 20)); } /** * Constructs a new {@code BigDecimal} instance from the given double {@code * val}. The scale of the result is 0. The result is rounded according to the * specified math context. * * @param val double value to be converted to a {@code BigDecimal} instance. * @param mc rounding mode and precision for the result of this operation. * @throws NumberFormatException if {@code val} is infinite or a NaN * @throws ArithmeticException if {@code mc.precision > 0} and {@code * mc.roundingMode == UNNECESSARY} and the new big decimal cannot be * represented within the given precision without rounding. */ public BigDecimal(double val, MathContext mc) { if (Double.isInfinite(val) || Double.isNaN(val)) { // math.03=Infinity or NaN throw new NumberFormatException("Infinite or NaN"); //$NON-NLS-1$ } initFrom(toPrecision(val, 20)); inplaceRound(mc); } /** * Constructs a new {@code BigDecimal} instance from the given int {@code val} * . The scale of the result is 0. * * @param val int value to be converted to a {@code BigDecimal} instance. */ public BigDecimal(int val) { this(val, 0); } /** * Constructs a new {@code BigDecimal} instance from the given int {@code val} * . The scale of the result is {@code 0}. The result is rounded according to * the specified math context. * * @param val int value to be converted to a {@code BigDecimal} instance. * @param mc rounding mode and precision for the result of this operation. * @throws ArithmeticException if {@code mc.precision > 0} and {@code * c.roundingMode == UNNECESSARY} and the new big decimal cannot be * represented within the given precision without rounding. */ public BigDecimal(int val, MathContext mc) { this(val, 0); inplaceRound(mc); } /** * Constructs a new {@code BigDecimal} instance from the given long {@code * val}. The scale of the result is {@code 0}. * * @param val long value to be converted to a {@code BigDecimal} instance. */ public BigDecimal(long val) { this(val, 0); } /** * Constructs a new {@code BigDecimal} instance from the given long {@code * val}. The scale of the result is {@code 0}. The result is rounded according * to the specified math context. * * @param val long value to be converted to a {@code BigDecimal} instance. * @param mc rounding mode and precision for the result of this operation. * @throws ArithmeticException if {@code mc.precision > 0} and {@code * mc.roundingMode == UNNECESSARY} and the new big decimal cannot be * represented within the given precision without rounding. */ public BigDecimal(long val, MathContext mc) { this(val); inplaceRound(mc); } /** * Constructs a new {@code BigDecimal} instance from a string representation. * * @param val string containing the string representation of this {@code * BigDecimal}. * @throws NumberFormatException if {@code val} does not contain a valid * string representation of a big decimal. */ public BigDecimal(String val) { initFrom(val); } /** * Constructs a new {@code BigDecimal} instance from a string representation. * The result is rounded according to the specified math context. * * @param val string containing the string representation of this {@code * BigDecimal}. * @param mc rounding mode and precision for the result of this operation. * @throws NumberFormatException if {@code val} does not contain a valid * string representation of a big decimal. * @throws ArithmeticException if {@code mc.precision > 0} and {@code * mc.roundingMode == UNNECESSARY} and the new big decimal cannot be * represented within the given precision without rounding. */ public BigDecimal(String val, MathContext mc) { this(val.toCharArray(), 0, val.length()); inplaceRound(mc); } private BigDecimal(BigInteger unscaledVal, double scale) { if (unscaledVal == null) { throw new NullPointerException(); } this.scale = scale; setUnscaledValue(unscaledVal); } private BigDecimal(double smallValue, double scale) { this.smallValue = smallValue; this.scale = scale; this.bitLength = bitLength(smallValue); } private BigDecimal(long smallValue, int scale) { this.scale = scale; this.bitLength = bitLength(smallValue); if (bitLength < SMALL_VALUE_BITS) { this.smallValue = smallValue; } else { this.intVal = BigInteger.valueOf(smallValue); } } /** * Returns a new {@code BigDecimal} whose value is the absolute value of * {@code this}. The scale of the result is the same as the scale of this. * * @return {@code abs(this)} */ public BigDecimal abs() { return ((signum() < 0) ? negate() : this); } /** * Returns a new {@code BigDecimal} whose value is the absolute value of * {@code this}. The result is rounded according to the passed context {@code * mc}. * * @param mc rounding mode and precision for the result of this operation. * @return {@code abs(this)} */ public BigDecimal abs(MathContext mc) { return round(mc).abs(); } /** * Returns a new {@code BigDecimal} whose value is {@code this + augend}. The * scale of the result is the maximum of the scales of the two arguments. * * @param augend value to be added to {@code this}. * @return {@code this + augend}. * @throws NullPointerException if {@code augend == null}. */ public BigDecimal add(BigDecimal augend) { double diffScale = this.scale - augend.scale; // Fast return when some operand is zero if (this.isZero()) { if (diffScale <= 0) { return augend; } if (augend.isZero()) { return this; } } else if (augend.isZero()) { if (diffScale >= 0) { return this; } } // Let be: this = [u1,s1] and augend = [u2,s2] if (diffScale == 0) { // case s1 == s2: [u1 + u2 , s1] if (Math.max(this.bitLength, augend.bitLength) + 1 < SMALL_VALUE_BITS) { return valueOf(this.smallValue + augend.smallValue, this.scale); } return new BigDecimal(this.getUnscaledValue().add( augend.getUnscaledValue()), this.scale); } else if (diffScale > 0) { // case s1 > s2 : [(u1 + u2) * 10 ^ (s1 - s2) , s1] return addAndMult10(this, augend, diffScale); } else { // case s2 > s1 : [(u2 + u1) * 10 ^ (s2 - s1) , s2] return addAndMult10(augend, this, -diffScale); } } /** * Returns a new {@code BigDecimal} whose value is {@code this + augend}. The * result is rounded according to the passed context {@code mc}. * * @param augend value to be added to {@code this}. * @param mc rounding mode and precision for the result of this operation. * @return {@code this + augend}. * @throws NullPointerException if {@code augend == null} or {@code mc == * null}. */ public BigDecimal add(BigDecimal augend, MathContext mc) { BigDecimal larger; // operand with the largest unscaled value BigDecimal smaller; // operand with the smallest unscaled value BigInteger tempBI; double diffScale = this.scale - augend.scale; int largerSignum; // Some operand is zero or the precision is infinity if ((augend.isZero()) || (this.isZero()) || (mc.getPrecision() == 0)) { return add(augend).round(mc); } // Cases where there is room for optimizations if (this.approxPrecision() < diffScale - 1) { larger = augend; smaller = this; } else if (augend.approxPrecision() < -diffScale - 1) { larger = this; smaller = augend; } else { // No optimization is done return add(augend).round(mc); } if (mc.getPrecision() >= larger.approxPrecision()) { // No optimization is done return add(augend).round(mc); } // Cases where it's unnecessary to add two numbers with very different // scales largerSignum = larger.signum(); if (largerSignum == smaller.signum()) { tempBI = Multiplication.multiplyByPositiveInt(larger.getUnscaledValue(), 10).add(BigInteger.valueOf(largerSignum)); } else { tempBI = larger.getUnscaledValue().subtract( BigInteger.valueOf(largerSignum)); tempBI = Multiplication.multiplyByPositiveInt(tempBI, 10).add( BigInteger.valueOf(largerSignum * 9)); } // Rounding the improved adding larger = new BigDecimal(tempBI, larger.scale + 1); return larger.round(mc); } /** * Returns this {@code BigDecimal} as a byte value if it has no fractional * part and if its value fits to the byte range ([-128..127]). If these * conditions are not met, an {@code ArithmeticException} is thrown. * * @return this {@code BigDecimal} as a byte value. * @throws ArithmeticException if rounding is necessary or the number doesn't * fit in a byte. */ public byte byteValueExact() { return (byte) valueExact(8); } /** * Compares this {@code BigDecimal} with {@code val}. Returns one of the three * values {@code 1}, {@code 0}, or {@code -1}. The method behaves as if * {@code this.subtract(val)} is computed. If this difference is > 0 then 1 is * returned, if the difference is < 0 then -1 is returned, and if the * difference is 0 then 0 is returned. This means, that if two decimal * instances are compared which are equal in value but differ in scale, then * these two instances are considered as equal. * * @param val value to be compared with {@code this}. * @return {@code 1} if {@code this > val}, {@code -1} if {@code this < val}, * {@code 0} if {@code this == val}. * @throws NullPointerException if {@code val == null}. */ public int compareTo(BigDecimal val) { int thisSign = signum(); int valueSign = val.signum(); if (thisSign == valueSign) { if (this.scale == val.scale && this.bitLength < SMALL_VALUE_BITS && val.bitLength < SMALL_VALUE_BITS) { return (smallValue < val.smallValue) ? -1 : (smallValue > val.smallValue) ? 1 : 0; } double diffScale = this.scale - val.scale; double diffPrecision = this.approxPrecision() - val.approxPrecision(); if (diffPrecision > diffScale + 1) { return thisSign; } else if (diffPrecision < diffScale - 1) { return -thisSign; } else { // thisSign == val.signum() and diffPrecision is aprox. diffScale BigInteger thisUnscaled = this.getUnscaledValue(); BigInteger valUnscaled = val.getUnscaledValue(); // If any of both precision is bigger, append zeros to the shorter one if (diffScale < 0) { thisUnscaled = thisUnscaled.multiply(Multiplication.powerOf10(-diffScale)); } else if (diffScale > 0) { valUnscaled = valUnscaled.multiply(Multiplication.powerOf10(diffScale)); } return thisUnscaled.compareTo(valUnscaled); } } else if (thisSign < valueSign) { return -1; } else { return 1; } } /** * Returns a new {@code BigDecimal} whose value is {@code this / divisor}. The * scale of the result is the difference of the scales of {@code this} and * {@code divisor}. If the exact result requires more digits, then the scale * is adjusted accordingly. For example, {@code 1/128 = 0.0078125} which has a * scale of {@code 7} and precision {@code 5}. * * @param divisor value by which {@code this} is divided. * @return {@code this / divisor}. * @throws NullPointerException if {@code divisor == null}. * @throws ArithmeticException if {@code divisor == 0}. * @throws ArithmeticException if the result cannot be represented exactly. */ public BigDecimal divide(BigDecimal divisor) { BigInteger p = this.getUnscaledValue(); BigInteger q = divisor.getUnscaledValue(); BigInteger gcd; // greatest common divisor between 'p' and 'q' BigInteger quotAndRem[]; double diffScale = scale - divisor.scale; int newScale; // the new scale for final quotient int k; // number of factors "2" in 'q' int l = 0; // number of factors "5" in 'q' int i = 1; int lastPow = FIVE_POW.length - 1; if (divisor.isZero()) { // math.04=Division by zero throw new ArithmeticException("Division by zero"); //$NON-NLS-1$ } if (p.signum() == 0) { return zeroScaledBy(diffScale); } // To divide both by the GCD gcd = p.gcd(q); p = p.divide(gcd); q = q.divide(gcd); // To simplify all "2" factors of q, dividing by 2^k k = q.getLowestSetBit(); q = q.shiftRight(k); // To simplify all "5" factors of q, dividing by 5^l do { quotAndRem = q.divideAndRemainder(FIVE_POW[i]); if (quotAndRem[1].signum() == 0) { l += i; if (i < lastPow) { i++; } q = quotAndRem[0]; } else { if (i == 1) { break; } i = 1; } } while (true); // If abs(q) != 1 then the quotient is periodic if (!q.abs().equals(BigInteger.ONE)) { // math.05=Non-terminating decimal expansion; no exact representable // decimal result. throw new ArithmeticException( "Non-terminating decimal expansion; no exact representable decimal result"); //$NON-NLS-1$ } // The sign of the is fixed and the quotient will be saved in 'p' if (q.signum() < 0) { p = p.negate(); } // Checking if the new scale is out of range newScale = toIntScale(diffScale + Math.max(k, l)); // k >= 0 and l >= 0 implies that k - l is in the 32-bit range i = k - l; p = (i > 0) ? Multiplication.multiplyByFivePow(p, i) : p.shiftLeft(-i); return new BigDecimal(p, newScale); } /** * Returns a new {@code BigDecimal} whose value is {@code this / divisor}. The * scale of the result is the scale of {@code this}. If rounding is required * to meet the specified scale, then the specified rounding mode {@code * roundingMode} is applied. * * @param divisor value by which {@code this} is divided. * @param roundingMode rounding mode to be used to round the result. * @return {@code this / divisor} rounded according to the given rounding * mode. * @throws NullPointerException if {@code divisor == null}. * @throws IllegalArgumentException if {@code roundingMode} is not a valid * rounding mode. * @throws ArithmeticException if {@code divisor == 0}. * @throws ArithmeticException if {@code roundingMode == ROUND_UNNECESSARY} * and rounding is necessary according to the scale of this. */ public BigDecimal divide(BigDecimal divisor, int roundingMode) { return divide(divisor, (int) scale, RoundingMode.valueOf(roundingMode)); } /** * Returns a new {@code BigDecimal} whose value is {@code this / divisor}. As * scale of the result the parameter {@code scale} is used. If rounding is * required to meet the specified scale, then the specified rounding mode * {@code roundingMode} is applied. * * @param divisor value by which {@code this} is divided. * @param scale the scale of the result returned. * @param roundingMode rounding mode to be used to round the result. * @return {@code this / divisor} rounded according to the given rounding * mode. * @throws NullPointerException if {@code divisor == null}. * @throws IllegalArgumentException if {@code roundingMode} is not a valid * rounding mode. * @throws ArithmeticException if {@code divisor == 0}. * @throws ArithmeticException if {@code roundingMode == ROUND_UNNECESSARY} * and rounding is necessary according to the given scale. */ public BigDecimal divide(BigDecimal divisor, int scale, int roundingMode) { return divide(divisor, scale, RoundingMode.valueOf(roundingMode)); } /** * Returns a new {@code BigDecimal} whose value is {@code this / divisor}. As * scale of the result the parameter {@code scale} is used. If rounding is * required to meet the specified scale, then the specified rounding mode * {@code roundingMode} is applied. * * @param divisor value by which {@code this} is divided. * @param scale the scale of the result returned. * @param roundingMode rounding mode to be used to round the result. * @return {@code this / divisor} rounded according to the given rounding * mode. * @throws NullPointerException if {@code divisor == null} or {@code * roundingMode == null}. * @throws ArithmeticException if {@code divisor == 0}. * @throws ArithmeticException if {@code roundingMode == * RoundingMode.UNNECESSAR}Y and rounding is necessary according to * the given scale and given precision. */ public BigDecimal divide(BigDecimal divisor, int scale, RoundingMode roundingMode) { // Let be: this = [u1,s1] and divisor = [u2,s2] if (roundingMode == null) { throw new NullPointerException(); } if (divisor.isZero()) { // math.04=Division by zero throw new ArithmeticException("Division by zero"); //$NON-NLS-1$ } double diffScale = this.scale - divisor.scale - scale; if (this.bitLength < SMALL_VALUE_BITS && divisor.bitLength < SMALL_VALUE_BITS) { if (diffScale == 0) { return dividePrimitiveDoubles(this.smallValue, divisor.smallValue, scale, roundingMode); } else if (diffScale > 0) { if (diffScale < DOUBLE_TEN_POW.length && divisor.bitLength + DOUBLE_TEN_POW_BIT_LENGTH[ (int) diffScale] < SMALL_VALUE_BITS) { return dividePrimitiveDoubles(this.smallValue, divisor.smallValue * DOUBLE_TEN_POW[(int) diffScale], scale, roundingMode); } } else { // diffScale < 0 if (-diffScale < DOUBLE_TEN_POW.length && this.bitLength + DOUBLE_TEN_POW_BIT_LENGTH[(int) -diffScale] < SMALL_VALUE_BITS) { return dividePrimitiveDoubles(this.smallValue * DOUBLE_TEN_POW[(int) -diffScale], divisor.smallValue, scale, roundingMode); } } } BigInteger scaledDividend = this.getUnscaledValue(); BigInteger scaledDivisor = divisor.getUnscaledValue(); // for scaling of // 'u2' if (diffScale > 0) { // Multiply 'u2' by: 10^((s1 - s2) - scale) scaledDivisor = Multiplication.multiplyByTenPow(scaledDivisor, (int) diffScale); } else if (diffScale < 0) { // Multiply 'u1' by: 10^(scale - (s1 - s2)) scaledDividend = Multiplication.multiplyByTenPow(scaledDividend, (int) -diffScale); } return divideBigIntegers(scaledDividend, scaledDivisor, scale, roundingMode); } /** * Returns a new {@code BigDecimal} whose value is {@code this / divisor}. The * result is rounded according to the passed context {@code mc}. If the passed * math context specifies precision {@code 0}, then this call is equivalent to * {@code this.divide(divisor)}. * * @param divisor value by which {@code this} is divided. * @param mc rounding mode and precision for the result of this operation. * @return {@code this / divisor}. * @throws NullPointerException if {@code divisor == null} or {@code mc == * null}. * @throws ArithmeticException if {@code divisor == 0}. * @throws ArithmeticException if {@code mc.getRoundingMode() == UNNECESSARY} * and rounding is necessary according {@code mc.getPrecision()}. */ public BigDecimal divide(BigDecimal divisor, MathContext mc) { /* * Calculating how many zeros must be append to 'dividend' to obtain a * quotient with at least 'mc.precision()' digits */ double traillingZeros = mc.getPrecision() + 2L + divisor.approxPrecision() - approxPrecision(); double diffScale = scale - divisor.scale; double newScale = diffScale; // scale of the final quotient int compRem; // to compare the remainder int i = 1; // index int lastPow = TEN_POW.length - 1; // last power of ten BigInteger integerQuot; // for temporal results BigInteger quotAndRem[] = {getUnscaledValue()}; // In special cases it reduces the problem to call the dual method if ((mc.getPrecision() == 0) || (this.isZero()) || (divisor.isZero())) { return this.divide(divisor); } if (traillingZeros > 0) { // To append trailing zeros at end of dividend quotAndRem[0] = getUnscaledValue().multiply( Multiplication.powerOf10(traillingZeros)); newScale += traillingZeros; } quotAndRem = quotAndRem[0].divideAndRemainder(divisor.getUnscaledValue()); integerQuot = quotAndRem[0]; // Calculating the exact quotient with at least 'mc.precision()' digits if (quotAndRem[1].signum() != 0) { // Checking if: 2 * remainder >= divisor ? compRem = quotAndRem[1].shiftLeftOneBit().compareTo( divisor.getUnscaledValue()); // quot := quot * 10 + r; with 'r' in {-6,-5,-4, 0,+4,+5,+6} integerQuot = integerQuot.multiply(BigInteger.TEN).add( BigInteger.valueOf(quotAndRem[0].signum() * (5 + compRem))); newScale++; } else { // To strip trailing zeros until the preferred scale is reached while (!integerQuot.testBit(0)) { quotAndRem = integerQuot.divideAndRemainder(TEN_POW[i]); if ((quotAndRem[1].signum() == 0) && (newScale - i >= diffScale)) { newScale -= i; if (i < lastPow) { i++; } integerQuot = quotAndRem[0]; } else { if (i == 1) { break; } i = 1; } } } // To perform rounding return new BigDecimal(integerQuot, toIntScale(newScale), mc); } /** * Returns a new {@code BigDecimal} whose value is {@code this / divisor}. The * scale of the result is the scale of {@code this}. If rounding is required * to meet the specified scale, then the specified rounding mode {@code * roundingMode} is applied. * * @param divisor value by which {@code this} is divided. * @param roundingMode rounding mode to be used to round the result. * @return {@code this / divisor} rounded according to the given rounding * mode. * @throws NullPointerException if {@code divisor == null} or {@code * roundingMode == null}. * @throws ArithmeticException if {@code divisor == 0}. * @throws ArithmeticException if {@code roundingMode == * RoundingMode.UNNECESSARY} and rounding is necessary according to * the scale of this. */ public BigDecimal divide(BigDecimal divisor, RoundingMode roundingMode) { return divide(divisor, (int) scale, roundingMode); } /** * Returns a {@code BigDecimal} array which contains the integral part of * {@code this / divisor} at index 0 and the remainder {@code this % divisor} * at index 1. The quotient is rounded down towards zero to the next integer. * * @param divisor value by which {@code this} is divided. * @return {@code [this.divideToIntegralValue(divisor), * this.remainder(divisor)]}. * @throws NullPointerException if {@code divisor == null}. * @throws ArithmeticException if {@code divisor == 0}. * @see #divideToIntegralValue * @see #remainder */ public BigDecimal[] divideAndRemainder(BigDecimal divisor) { BigDecimal quotAndRem[] = new BigDecimal[2]; quotAndRem[0] = this.divideToIntegralValue(divisor); quotAndRem[1] = this.subtract(quotAndRem[0].multiply(divisor)); return quotAndRem; } /** * Returns a {@code BigDecimal} array which contains the integral part of * {@code this / divisor} at index 0 and the remainder {@code this % divisor} * at index 1. The quotient is rounded down towards zero to the next integer. * The rounding mode passed with the parameter {@code mc} is not considered. * But if the precision of {@code mc > 0} and the integral part requires more * digits, then an {@code ArithmeticException} is thrown. * * @param divisor value by which {@code this} is divided. * @param mc math context which determines the maximal precision of the * result. * @return {@code [this.divideToIntegralValue(divisor), * this.remainder(divisor)]}. * @throws NullPointerException if {@code divisor == null}. * @throws ArithmeticException if {@code divisor == 0}. * @see #divideToIntegralValue * @see #remainder */ public BigDecimal[] divideAndRemainder(BigDecimal divisor, MathContext mc) { BigDecimal quotAndRem[] = new BigDecimal[2]; quotAndRem[0] = this.divideToIntegralValue(divisor, mc); quotAndRem[1] = this.subtract(quotAndRem[0].multiply(divisor)); return quotAndRem; } /** * Returns a new {@code BigDecimal} whose value is the integral part of * {@code this / divisor}. The quotient is rounded down towards zero to the * next integer. For example, {@code 0.5/0.2 = 2}. * * @param divisor value by which {@code this} is divided. * @return integral part of {@code this / divisor}. * @throws NullPointerException if {@code divisor == null}. * @throws ArithmeticException if {@code divisor == 0}. */ public BigDecimal divideToIntegralValue(BigDecimal divisor) { BigInteger integralValue; // the integer of result BigInteger powerOfTen; // some power of ten BigInteger quotAndRem[] = {getUnscaledValue()}; double newScale = this.scale - divisor.scale; double tempScale = 0; int i = 1; int lastPow = TEN_POW.length - 1; if (divisor.isZero()) { // math.04=Division by zero throw new ArithmeticException("Division by zero"); //$NON-NLS-1$ } if ((divisor.approxPrecision() + newScale > this.approxPrecision() + 1L) || (this.isZero())) { /* * If the divisor's integer part is greater than this's integer part, the * result must be zero with the appropriate scale */ integralValue = BigInteger.ZERO; } else if (newScale == 0) { integralValue = getUnscaledValue().divide(divisor.getUnscaledValue()); } else if (newScale > 0) { powerOfTen = Multiplication.powerOf10(newScale); integralValue = getUnscaledValue().divide( divisor.getUnscaledValue().multiply(powerOfTen)); integralValue = integralValue.multiply(powerOfTen); } else { // (newScale < 0) powerOfTen = Multiplication.powerOf10(-newScale); integralValue = getUnscaledValue().multiply(powerOfTen).divide( divisor.getUnscaledValue()); // To strip trailing zeros approximating to the preferred scale while (!integralValue.testBit(0)) { quotAndRem = integralValue.divideAndRemainder(TEN_POW[i]); if ((quotAndRem[1].signum() == 0) && (tempScale - i >= newScale)) { tempScale -= i; if (i < lastPow) { i++; } integralValue = quotAndRem[0]; } else { if (i == 1) { break; } i = 1; } } newScale = tempScale; } return ((integralValue.signum() == 0) ? zeroScaledBy(newScale) : new BigDecimal(integralValue, toIntScale(newScale))); } /** * Returns a new {@code BigDecimal} whose value is the integral part of * {@code this / divisor}. The quotient is rounded down towards zero to the * next integer. The rounding mode passed with the parameter {@code mc} is not * considered. But if the precision of {@code mc > 0} and the integral part * requires more digits, then an {@code ArithmeticException} is thrown. * * @param divisor value by which {@code this} is divided. * @param mc math context which determines the maximal precision of the * result. * @return integral part of {@code this / divisor}. * @throws NullPointerException if {@code divisor == null} or {@code mc == * null}. * @throws ArithmeticException if {@code divisor == 0}. * @throws ArithmeticException if {@code mc.getPrecision() > 0} and the result * requires more digits to be represented. */ public BigDecimal divideToIntegralValue(BigDecimal divisor, MathContext mc) { int mcPrecision = mc.getPrecision(); int diffPrecision = this.precision() - divisor.precision(); int lastPow = TEN_POW.length - 1; double diffScale = this.scale - divisor.scale; double newScale = diffScale; double quotPrecision = diffPrecision - diffScale + 1; BigInteger quotAndRem[] = new BigInteger[2]; // In special cases it call the dual method if ((mcPrecision == 0) || (this.isZero()) || (divisor.isZero())) { return this.divideToIntegralValue(divisor); } // Let be: this = [u1,s1] and divisor = [u2,s2] if (quotPrecision <= 0) { quotAndRem[0] = BigInteger.ZERO; } else if (diffScale == 0) { // CASE s1 == s2: to calculate u1 / u2 quotAndRem[0] = this.getUnscaledValue().divide(divisor.getUnscaledValue()); } else if (diffScale > 0) { // CASE s1 >= s2: to calculate u1 / (u2 * 10^(s1-s2) quotAndRem[0] = this.getUnscaledValue().divide( divisor.getUnscaledValue().multiply( Multiplication.powerOf10(diffScale))); // To chose 10^newScale to get a quotient with at least 'mc.precision()' // digits newScale = Math.min(diffScale, Math.max(mcPrecision - quotPrecision + 1, 0)); // To calculate: (u1 / (u2 * 10^(s1-s2)) * 10^newScale quotAndRem[0] = quotAndRem[0].multiply(Multiplication.powerOf10(newScale)); } else { // CASE s2 > s1: /* * To calculate the minimum power of ten, such that the quotient (u1 * * 10^exp) / u2 has at least 'mc.precision()' digits. */ double exp = Math.min(-diffScale, Math.max((double) mcPrecision - diffPrecision, 0)); double compRemDiv; // Let be: (u1 * 10^exp) / u2 = [q,r] quotAndRem = this.getUnscaledValue().multiply( Multiplication.powerOf10(exp)).divideAndRemainder( divisor.getUnscaledValue()); newScale += exp; // To fix the scale exp = -newScale; // The remaining power of ten // If after division there is a remainder... if ((quotAndRem[1].signum() != 0) && (exp > 0)) { // Log10(r) + ((s2 - s1) - exp) > mc.precision ? compRemDiv = (new BigDecimal(quotAndRem[1])).precision() + exp - divisor.precision(); if (compRemDiv == 0) { // To calculate: (r * 10^exp2) / u2 quotAndRem[1] = quotAndRem[1].multiply(Multiplication.powerOf10(exp)).divide( divisor.getUnscaledValue()); compRemDiv = Math.abs(quotAndRem[1].signum()); } if (compRemDiv > 0) { // The quotient won't fit in 'mc.precision()' digits // math.06=Division impossible throw new ArithmeticException("Division impossible"); //$NON-NLS-1$ } } } // Fast return if the quotient is zero if (quotAndRem[0].signum() == 0) { return zeroScaledBy(diffScale); } BigInteger strippedBI = quotAndRem[0]; BigDecimal integralValue = new BigDecimal(quotAndRem[0]); int resultPrecision = integralValue.precision(); int i = 1; // To strip trailing zeros until the specified precision is reached while (!strippedBI.testBit(0)) { quotAndRem = strippedBI.divideAndRemainder(TEN_POW[i]); if ((quotAndRem[1].signum() == 0) && ((resultPrecision - i >= mcPrecision) || (newScale - i >= diffScale))) { resultPrecision -= i; newScale -= i; if (i < lastPow) { i++; } strippedBI = quotAndRem[0]; } else { if (i == 1) { break; } i = 1; } } // To check if the result fit in 'mc.precision()' digits if (resultPrecision > mcPrecision) { // math.06=Division impossible throw new ArithmeticException("Division impossible"); //$NON-NLS-1$ } integralValue.scale = toIntScale(newScale); integralValue.setUnscaledValue(strippedBI); return integralValue; } /** * Returns this {@code BigDecimal} as a double value. If {@code this} is too * big to be represented as an float, then {@code Double.POSITIVE_INFINITY} or * {@code Double.NEGATIVE_INFINITY} is returned. * <p> * Note, that if the unscaled value has more than 53 significant digits, then * this decimal cannot be represented exactly in a double variable. In this * case the result is rounded. * <p> * For example, if the instance {@code x1 = new BigDecimal("0.1")} cannot be * represented exactly as a double, and thus {@code x1.equals(new * BigDecimal(x1.doubleValue())} returns {@code false} for this case. * <p> * Similarly, if the instance {@code new BigDecimal(9007199254740993L)} is * converted to a double, the result is {@code 9.007199254740992E15}. * <p> * * @return this {@code BigDecimal} as a double value. */ @Override public double doubleValue() { return Double.parseDouble(this.toString()); } /** * Returns {@code true} if {@code x} is a {@code BigDecimal} instance and if * this instance is equal to this big decimal. Two big decimals are equal if * their unscaled value and their scale is equal. For example, 1.0 * (10*10^(-1)) is not equal to 1.00 (100*10^(-2)). Similarly, zero instances * are not equal if their scale differs. * * @param x object to be compared with {@code this}. * @return true if {@code x} is a {@code BigDecimal} and {@code this == x}. */ @Override public boolean equals(Object x) { if (this == x) { return true; } if (x instanceof BigDecimal) { BigDecimal x1 = (BigDecimal) x; return x1.scale == scale && (bitLength < SMALL_VALUE_BITS ? (x1.smallValue == smallValue) : intVal.equals(x1.intVal)); } return false; } /** * Returns this {@code BigDecimal} as a float value. If {@code this} is too * big to be represented as an float, then {@code Float.POSITIVE_INFINITY} or * {@code Float.NEGATIVE_INFINITY} is returned. * <p> * Note, that if the unscaled value has more than 24 significant digits, then * this decimal cannot be represented exactly in a float variable. In this * case the result is rounded. * <p> * For example, if the instance {@code x1 = new BigDecimal("0.1")} cannot be * represented exactly as a float, and thus {@code x1.equals(new * BigDecimal(x1.folatValue())} returns {@code false} for this case. * <p> * Similarly, if the instance {@code new BigDecimal(16777217)} is converted to * a float, the result is {@code 1.6777216E}7. * * @return this {@code BigDecimal} as a float value. */ @Override public float floatValue() { /* * A similar code like in doubleValue() could be repeated here, but this * simple implementation is quite efficient. */ float floatResult = signum(); double powerOfTwo = this.bitLength - (scale / LOG10_2); if ((powerOfTwo < -149) || (floatResult == 0.0f)) { // Cases which 'this' is very small floatResult *= 0.0f; } else if (powerOfTwo > 129) { // Cases which 'this' is very large floatResult *= Float.POSITIVE_INFINITY; } else { floatResult = (float) doubleValue(); } return floatResult; } /** * Returns a hash code for this {@code BigDecimal}. * * @return hash code for {@code this}. */ @Override public int hashCode() { if (hashCode != 0) { return hashCode; } if (bitLength < SMALL_VALUE_BITS) { long longValue = (long) smallValue; hashCode = (int) (longValue & 0xffffffff); hashCode = 33 * hashCode + (int) ((longValue >> 32) & 0xffffffff); hashCode = 17 * hashCode + (int) scale; return hashCode; } hashCode = 17 * intVal.hashCode() + (int) scale; return hashCode; } /** * Returns this {@code BigDecimal} as an int value. Any fractional part is * discarded. If the integral part of {@code this} is too big to be * represented as an int, then {@code this} % 2^32 is returned. * * @return this {@code BigDecimal} as a int value. */ @Override public int intValue() { /* * If scale <= -32 there are at least 32 trailing bits zero in 10^(-scale). * If the scale is positive and very large the long value could be zero. */ return ((scale <= -32) || (scale > approxPrecision()) ? 0 : toBigInteger().intValue()); } /** * Returns this {@code BigDecimal} as a int value if it has no fractional part * and if its value fits to the int range ([-2^{31}..2^{31}-1]). If these * conditions are not met, an {@code ArithmeticException} is thrown. * * @return this {@code BigDecimal} as a int value. * @throws ArithmeticException if rounding is necessary or the number doesn't * fit in a int. */ public int intValueExact() { return (int) valueExact(32); } /** * Returns this {@code BigDecimal} as an long value. Any fractional part is * discarded. If the integral part of {@code this} is too big to be * represented as an long, then {@code this} % 2^64 is returned. * * @return this {@code BigDecimal} as a long value. */ @Override public long longValue() { /* * If scale <= -64 there are at least 64 trailing bits zero in 10^(-scale). * If the scale is positive and very large the long value could be zero. */ return ((scale <= -64) || (scale > approxPrecision()) ? 0L : toBigInteger().longValue()); } /** * Returns this {@code BigDecimal} as a long value if it has no fractional * part and if its value fits to the int range ([-2^{63}..2^{63}-1]). If these * conditions are not met, an {@code ArithmeticException} is thrown. * * @return this {@code BigDecimal} as a long value. * @throws ArithmeticException if rounding is necessary or the number doesn't * fit in a long. */ public long longValueExact() { return valueExact(64); } /** * Returns the maximum of this {@code BigDecimal} and {@code val}. * * @param val value to be used to compute the maximum with this. * @return {@code max(this, val}. * @throws NullPointerException if {@code val == null}. */ public BigDecimal max(BigDecimal val) { return ((compareTo(val) >= 0) ? this : val); } /** * Returns the minimum of this {@code BigDecimal} and {@code val}. * * @param val value to be used to compute the minimum with this. * @return {@code min(this, val}. * @throws NullPointerException if {@code val == null}. */ public BigDecimal min(BigDecimal val) { return ((compareTo(val) <= 0) ? this : val); } /** * Returns a new {@code BigDecimal} instance where the decimal point has been * moved {@code n} places to the left. If {@code n < 0} then the decimal point * is moved {@code -n} places to the right. * <p> * The result is obtained by changing its scale. If the scale of the result * becomes negative, then its precision is increased such that the scale is * zero. * <p> * Note, that {@code movePointLeft(0)} returns a result which is * mathematically equivalent, but which has {@code scale >= 0}. * * @param n number of placed the decimal point has to be moved. * @return {@code this * 10^(-n}). */ public BigDecimal movePointLeft(int n) { return movePoint(scale + n); } /** * Returns a new {@code BigDecimal} instance where the decimal point has been * moved {@code n} places to the right. If {@code n < 0} then the decimal * point is moved {@code -n} places to the left. * <p> * The result is obtained by changing its scale. If the scale of the result * becomes negative, then its precision is increased such that the scale is * zero. * <p> * Note, that {@code movePointRight(0)} returns a result which is * mathematically equivalent, but which has scale >= 0. * * @param n number of placed the decimal point has to be moved. * @return {@code this * 10^n}. */ public BigDecimal movePointRight(int n) { return movePoint(scale - n); } /** * Returns a new {@code BigDecimal} whose value is {@code this * multiplicand} * . The scale of the result is the sum of the scales of the two arguments. * * @param multiplicand value to be multiplied with {@code this}. * @return {@code this * multiplicand}. * @throws NullPointerException if {@code multiplicand == null}. */ public BigDecimal multiply(BigDecimal multiplicand) { double newScale = this.scale + multiplicand.scale; if ((this.isZero()) || (multiplicand.isZero())) { return zeroScaledBy(newScale); } /* * Let be: this = [u1,s1] and multiplicand = [u2,s2] so: this x multiplicand * = [ s1 * s2 , s1 + s2 ] */ if (this.bitLength + multiplicand.bitLength < SMALL_VALUE_BITS) { return valueOf(this.smallValue * multiplicand.smallValue, toIntScale(newScale)); } return new BigDecimal(this.getUnscaledValue().multiply( multiplicand.getUnscaledValue()), toIntScale(newScale)); } /** * Returns a new {@code BigDecimal} whose value is {@code this * multiplicand} * . The result is rounded according to the passed context {@code mc}. * * @param multiplicand value to be multiplied with {@code this}. * @param mc rounding mode and precision for the result of this operation. * @return {@code this * multiplicand}. * @throws NullPointerException if {@code multiplicand == null} or {@code mc * == null}. */ public BigDecimal multiply(BigDecimal multiplicand, MathContext mc) { BigDecimal result = multiply(multiplicand); result.inplaceRound(mc); return result; } /** * Returns a new {@code BigDecimal} whose value is the {@code -this}. The * scale of the result is the same as the scale of this. * * @return {@code -this} */ public BigDecimal negate() { if (bitLength < SMALL_VALUE_BITS) { return valueOf(-smallValue, scale); } return new BigDecimal(getUnscaledValue().negate(), scale); } /** * Returns a new {@code BigDecimal} whose value is the {@code -this}. The * result is rounded according to the passed context {@code mc}. * * @param mc rounding mode and precision for the result of this operation. * @return {@code -this} */ public BigDecimal negate(MathContext mc) { return round(mc).negate(); } /** * Returns a new {@code BigDecimal} whose value is {@code +this}. The scale of * the result is the same as the scale of this. * * @return {@code this} */ public BigDecimal plus() { return this; } /** * Returns a new {@code BigDecimal} whose value is {@code +this}. The result * is rounded according to the passed context {@code mc}. * * @param mc rounding mode and precision for the result of this operation. * @return {@code this}, rounded */ public BigDecimal plus(MathContext mc) { return round(mc); } /** * Returns a new {@code BigDecimal} whose value is {@code this ^ n}. The scale * of the result is {@code n} times the scales of {@code this}. * <p> * {@code x.pow(0)} returns {@code 1}, even if {@code x == 0}. * <p> * Implementation Note: The implementation is based on the ANSI standard * X3.274-1996 algorithm. * * @param n exponent to which {@code this} is raised. * @return {@code this ^ n}. * @throws ArithmeticException if {@code n < 0} or {@code n > 999999999}. */ public BigDecimal pow(int n) { if (n == 0) { return ONE; } if ((n < 0) || (n > 999999999)) { // math.07=Invalid Operation throw new ArithmeticException("Invalid Operation"); //$NON-NLS-1$ } double newScale = scale * n; // Let be: this = [u,s] so: this^n = [u^n, s*n] return ((isZero()) ? zeroScaledBy(newScale) : new BigDecimal( getUnscaledValue().pow(n), toIntScale(newScale))); } /** * Returns a new {@code BigDecimal} whose value is {@code this ^ n}. The * result is rounded according to the passed context {@code mc}. * <p> * Implementation Note: The implementation is based on the ANSI standard * X3.274-1996 algorithm. * * @param n exponent to which {@code this} is raised. * @param mc rounding mode and precision for the result of this operation. * @return {@code this ^ n}. * @throws ArithmeticException if {@code n < 0} or {@code n > 999999999}. */ public BigDecimal pow(int n, MathContext mc) { // The ANSI standard X3.274-1996 algorithm int m = Math.abs(n); int mcPrecision = mc.getPrecision(); int elength = (int) Math.log10(m) + 1; // decimal digits in 'n' int oneBitMask; // mask of bits BigDecimal accum; // the single accumulator MathContext newPrecision = mc; // MathContext by default // In particular cases, it reduces the problem to call the other 'pow()' if ((n == 0) || ((isZero()) && (n > 0))) { return pow(n); } if ((m > 999999999) || ((mcPrecision == 0) && (n < 0)) || ((mcPrecision > 0) && (elength > mcPrecision))) { // math.07=Invalid Operation throw new ArithmeticException("Invalid Operation"); //$NON-NLS-1$ } if (mcPrecision > 0) { newPrecision = new MathContext(mcPrecision + elength + 1, mc.getRoundingMode()); } // The result is calculated as if 'n' were positive accum = round(newPrecision); oneBitMask = Integer.highestOneBit(m) >> 1; while (oneBitMask > 0) { accum = accum.multiply(accum, newPrecision); if ((m & oneBitMask) == oneBitMask) { accum = accum.multiply(this, newPrecision); } oneBitMask >>= 1; } // If 'n' is negative, the value is divided into 'ONE' if (n < 0) { accum = ONE.divide(accum, newPrecision); } // The final value is rounded to the destination precision accum.inplaceRound(mc); return accum; } /** * Returns the precision of this {@code BigDecimal}. The precision is the * number of decimal digits used to represent this decimal. It is equivalent * to the number of digits of the unscaled value. The precision of {@code 0} * is {@code 1} (independent of the scale). * * @return the precision of this {@code BigDecimal}. */ public int precision() { // Checking if the precision already was calculated if (precision > 0) { return precision; } double decimalDigits = 1; // the precision to be calculated double doubleUnsc = 1; // intVal in 'double' if (bitLength < SMALL_VALUE_BITS) { // To calculate the precision for small numbers if (bitLength >= 1) { doubleUnsc = smallValue; } decimalDigits += Math.log10(Math.abs(doubleUnsc)); } else { // (bitLength >= 1024) /* * To calculate the precision for large numbers Note that: 2 ^(bitlength() * - 1) <= intVal < 10 ^(precision()) */ decimalDigits += (bitLength - 1) * LOG10_2; // If after division the number isn't zero, exists an aditional digit if (getUnscaledValue().divide(Multiplication.powerOf10(decimalDigits)).signum() != 0) { decimalDigits++; } } precision = (int) decimalDigits; return precision; } /** * Returns a new {@code BigDecimal} whose value is {@code this % divisor}. * <p> * The remainder is defined as {@code this - * this.divideToIntegralValue(divisor) * divisor}. * * @param divisor value by which {@code this} is divided. * @return {@code this % divisor}. * @throws NullPointerException if {@code divisor == null}. * @throws ArithmeticException if {@code divisor == 0}. */ public BigDecimal remainder(BigDecimal divisor) { return divideAndRemainder(divisor)[1]; } /** * Returns a new {@code BigDecimal} whose value is {@code this % divisor}. * <p> * The remainder is defined as {@code this - * this.divideToIntegralValue(divisor) * divisor}. * <p> * The specified rounding mode {@code mc} is used for the division only. * * @param divisor value by which {@code this} is divided. * @param mc rounding mode and precision to be used. * @return {@code this % divisor}. * @throws NullPointerException if {@code divisor == null}. * @throws ArithmeticException if {@code divisor == 0}. * @throws ArithmeticException if {@code mc.getPrecision() > 0} and the result * of {@code this.divideToIntegralValue(divisor, mc)} requires more * digits to be represented. */ public BigDecimal remainder(BigDecimal divisor, MathContext mc) { return divideAndRemainder(divisor, mc)[1]; } /** * Returns a new {@code BigDecimal} whose value is {@code this}, rounded * according to the passed context {@code mc}. * <p> * If {@code mc.precision = 0}, then no rounding is performed. * <p> * If {@code mc.precision > 0} and {@code mc.roundingMode == UNNECESSARY}, * then an {@code ArithmeticException} is thrown if the result cannot be * represented exactly within the given precision. * * @param mc rounding mode and precision for the result of this operation. * @return {@code this} rounded according to the passed context. * @throws ArithmeticException if {@code mc.precision > 0} and {@code * mc.roundingMode == UNNECESSARY} and this cannot be represented * within the given precision. */ public BigDecimal round(MathContext mc) { BigDecimal thisBD = new BigDecimal(getUnscaledValue(), scale); thisBD.inplaceRound(mc); return thisBD; } /** * Returns the scale of this {@code BigDecimal}. The scale is the number of * digits behind the decimal point. The value of this {@code BigDecimal} is * the unsignedValue * 10^(-scale). If the scale is negative, then this * {@code BigDecimal} represents a big integer. * * @return the scale of this {@code BigDecimal}. */ public int scale() { return (int) scale; } /** * Returns a new {@code BigDecimal} whose value is {@code this} 10^{@code n}. * The scale of the result is {@code this.scale()} - {@code n}. The precision * of the result is the precision of {@code this}. * <p> * This method has the same effect as {@link #movePointRight}, except that the * precision is not changed. * * @param n number of places the decimal point has to be moved. * @return {@code this * 10^n} */ public BigDecimal scaleByPowerOfTen(int n) { double newScale = scale - n; if (bitLength < SMALL_VALUE_BITS) { // Taking care when a 0 is to be scaled if (smallValue == 0) { return zeroScaledBy(newScale); } return valueOf(smallValue, toIntScale(newScale)); } return new BigDecimal(getUnscaledValue(), toIntScale(newScale)); } /** * Returns a new {@code BigDecimal} instance with the specified scale. If the * new scale is greater than the old scale, then additional zeros are added to * the unscaled value. If the new scale is smaller than the old scale, then * trailing zeros are removed. If the trailing digits are not zeros then an * ArithmeticException is thrown. * <p> * If no exception is thrown, then the following equation holds: {@code * x.setScale(s).compareTo(x) == 0}. * * @param newScale scale of the result returned. * @return a new {@code BigDecimal} instance with the specified scale. * @throws ArithmeticException if rounding would be necessary. */ public BigDecimal setScale(int newScale) { return setScale(newScale, RoundingMode.UNNECESSARY); } /** * Returns a new {@code BigDecimal} instance with the specified scale. * <p> * If the new scale is greater than the old scale, then additional zeros are * added to the unscaled value. In this case no rounding is necessary. * <p> * If the new scale is smaller than the old scale, then trailing digits are * removed. If these trailing digits are not zero, then the remaining unscaled * value has to be rounded. For this rounding operation the specified rounding * mode is used. * * @param newScale scale of the result returned. * @param roundingMode rounding mode to be used to round the result. * @return a new {@code BigDecimal} instance with the specified scale. * @throws IllegalArgumentException if {@code roundingMode} is not a valid * rounding mode. * @throws ArithmeticException if {@code roundingMode == ROUND_UNNECESSARY} * and rounding is necessary according to the given scale. */ public BigDecimal setScale(int newScale, int roundingMode) { return setScale(newScale, RoundingMode.valueOf(roundingMode)); } /** * Returns a new {@code BigDecimal} instance with the specified scale. * <p> * If the new scale is greater than the old scale, then additional zeros are * added to the unscaled value. In this case no rounding is necessary. * <p> * If the new scale is smaller than the old scale, then trailing digits are * removed. If these trailing digits are not zero, then the remaining unscaled * value has to be rounded. For this rounding operation the specified rounding * mode is used. * * @param newScale scale of the result returned. * @param roundingMode rounding mode to be used to round the result. * @return a new {@code BigDecimal} instance with the specified scale. * @throws NullPointerException if {@code roundingMode == null}. * @throws ArithmeticException if {@code roundingMode == ROUND_UNNECESSARY} * and rounding is necessary according to the given scale. */ public BigDecimal setScale(int newScale, RoundingMode roundingMode) { if (roundingMode == null) { throw new NullPointerException(); } double diffScale = newScale - scale; // Let be: 'this' = [u,s] if (diffScale == 0) { return this; } if (diffScale > 0) { // return [u * 10^(s2 - s), newScale] if (diffScale < DOUBLE_TEN_POW.length && (this.bitLength + DOUBLE_TEN_POW_BIT_LENGTH[ (int) diffScale]) < SMALL_VALUE_BITS) { return valueOf(this.smallValue * DOUBLE_TEN_POW[(int) diffScale], newScale); } return new BigDecimal(Multiplication.multiplyByTenPow(getUnscaledValue(), (int) diffScale), newScale); } // diffScale < 0 // return [u,s] / [1,newScale] with the appropriate scale and rounding if (this.bitLength < SMALL_VALUE_BITS && -diffScale < DOUBLE_TEN_POW.length) { return dividePrimitiveDoubles(this.smallValue, DOUBLE_TEN_POW[(int) -diffScale], newScale, roundingMode); } return divideBigIntegers(this.getUnscaledValue(), Multiplication.powerOf10(-diffScale), newScale, roundingMode); } /** * Returns this {@code BigDecimal} as a short value if it has no fractional * part and if its value fits to the short range ([-2^{15}..2^{15}-1]). If * these conditions are not met, an {@code ArithmeticException} is thrown. * * @return this {@code BigDecimal} as a short value. * @throws ArithmeticException if rounding is necessary of the number doesn't * fit in a short. */ public short shortValueExact() { return (short) valueExact(16); } /** * Returns the sign of this {@code BigDecimal}. * * @return {@code -1} if {@code this < 0}, {@code 0} if {@code this == 0}, * {@code 1} if {@code this > 0}. */ public int signum() { if (bitLength < SMALL_VALUE_BITS) { return this.smallValue < 0 ? -1 : this.smallValue > 0 ? 1 : 0; } return getUnscaledValue().signum(); } /** * Returns a new {@code BigDecimal} instance with the same value as {@code * this} but with a unscaled value where the trailing zeros have been removed. * If the unscaled value of {@code this} has n trailing zeros, then the scale * and the precision of the result has been reduced by n. * * @return a new {@code BigDecimal} instance equivalent to this where the * trailing zeros of the unscaled value have been removed. */ public BigDecimal stripTrailingZeros() { int i = 1; // 1 <= i <= 18 int lastPow = TEN_POW.length - 1; double newScale = scale; if (isZero()) { return new BigDecimal("0"); } BigInteger strippedBI = getUnscaledValue(); BigInteger[] quotAndRem; // while the number is even... while (!strippedBI.testBit(0)) { // To divide by 10^i quotAndRem = strippedBI.divideAndRemainder(TEN_POW[i]); // To look the remainder if (quotAndRem[1].signum() == 0) { // To adjust the scale newScale -= i; if (i < lastPow) { // To set to the next power i++; } strippedBI = quotAndRem[0]; } else { if (i == 1) { // 'this' has no more trailing zeros break; } // To set to the smallest power of ten i = 1; } } return new BigDecimal(strippedBI, toIntScale(newScale)); } /** * Returns a new {@code BigDecimal} whose value is {@code this - subtrahend}. * The scale of the result is the maximum of the scales of the two arguments. * * @param subtrahend value to be subtracted from {@code this}. * @return {@code this - subtrahend}. * @throws NullPointerException if {@code subtrahend == null}. */ public BigDecimal subtract(BigDecimal subtrahend) { double diffScale = this.scale - subtrahend.scale; // Fast return when some operand is zero if (this.isZero()) { if (diffScale <= 0) { return subtrahend.negate(); } if (subtrahend.isZero()) { return this; } } else if (subtrahend.isZero()) { if (diffScale >= 0) { return this; } } // Let be: this = [u1,s1] and subtrahend = [u2,s2] so: if (diffScale == 0) { // case s1 = s2 : [u1 - u2 , s1] if (Math.max(this.bitLength, subtrahend.bitLength) + 1 < SMALL_VALUE_BITS) { return valueOf(this.smallValue - subtrahend.smallValue, this.scale); } return new BigDecimal(this.getUnscaledValue().subtract( subtrahend.getUnscaledValue()), this.scale); } else if (diffScale > 0) { // case s1 > s2 : [ u1 - u2 * 10 ^ (s1 - s2) , s1 ] if (diffScale < DOUBLE_TEN_POW.length && Math.max(this.bitLength, subtrahend.bitLength + DOUBLE_TEN_POW_BIT_LENGTH[(int) diffScale]) + 1 < SMALL_VALUE_BITS) { return valueOf(this.smallValue - subtrahend.smallValue * DOUBLE_TEN_POW[(int) diffScale], this.scale); } return new BigDecimal(this.getUnscaledValue().subtract( Multiplication.multiplyByTenPow(subtrahend.getUnscaledValue(), (int) diffScale)), this.scale); } else { // case s2 > s1 : [ u1 * 10 ^ (s2 - s1) - u2 , s2 ] diffScale = -diffScale; if (diffScale < DOUBLE_TEN_POW.length && Math.max(this.bitLength + DOUBLE_TEN_POW_BIT_LENGTH[(int) diffScale], subtrahend.bitLength) + 1 < SMALL_VALUE_BITS) { return valueOf(this.smallValue * DOUBLE_TEN_POW[(int) diffScale] - subtrahend.smallValue, subtrahend.scale); } return new BigDecimal(Multiplication.multiplyByTenPow( this.getUnscaledValue(), (int) diffScale).subtract( subtrahend.getUnscaledValue()), subtrahend.scale); } } /** * Returns a new {@code BigDecimal} whose value is {@code this - subtrahend}. * The result is rounded according to the passed context {@code mc}. * * @param subtrahend value to be subtracted from {@code this}. * @param mc rounding mode and precision for the result of this operation. * @return {@code this - subtrahend}. * @throws NullPointerException if {@code subtrahend == null} or {@code mc == * null}. */ public BigDecimal subtract(BigDecimal subtrahend, MathContext mc) { double diffScale = subtrahend.scale - this.scale; int thisSignum; BigDecimal leftOperand; // it will be only the left operand (this) BigInteger tempBI; // Some operand is zero or the precision is infinity if ((subtrahend.isZero()) || (this.isZero()) || (mc.getPrecision() == 0)) { return subtract(subtrahend).round(mc); } // Now: this != 0 and subtrahend != 0 if (subtrahend.approxPrecision() < diffScale - 1) { // Cases where it is unnecessary to subtract two numbers with very // different scales if (mc.getPrecision() < this.approxPrecision()) { thisSignum = this.signum(); if (thisSignum != subtrahend.signum()) { tempBI = Multiplication.multiplyByPositiveInt( this.getUnscaledValue(), 10).add(BigInteger.valueOf(thisSignum)); } else { tempBI = this.getUnscaledValue().subtract( BigInteger.valueOf(thisSignum)); tempBI = Multiplication.multiplyByPositiveInt(tempBI, 10).add( BigInteger.valueOf(thisSignum * 9)); } // Rounding the improved subtracting leftOperand = new BigDecimal(tempBI, this.scale + 1); return leftOperand.round(mc); } } // No optimization is done return subtract(subtrahend).round(mc); } /** * Returns this {@code BigDecimal} as a big integer instance. A fractional * part is discarded. * * @return this {@code BigDecimal} as a big integer instance. */ public BigInteger toBigInteger() { if ((scale == 0) || (isZero())) { return getUnscaledValue(); } else if (scale < 0) { return getUnscaledValue().multiply(Multiplication.powerOf10(-scale)); } else { // (scale > 0) return getUnscaledValue().divide(Multiplication.powerOf10(scale)); } } /** * Returns this {@code BigDecimal} as a big integer instance if it has no * fractional part. If this {@code BigDecimal} has a fractional part, i.e. if * rounding would be necessary, an {@code ArithmeticException} is thrown. * * @return this {@code BigDecimal} as a big integer value. * @throws ArithmeticException if rounding is necessary. */ public BigInteger toBigIntegerExact() { if ((scale == 0) || (isZero())) { return getUnscaledValue(); } else if (scale < 0) { return getUnscaledValue().multiply(Multiplication.powerOf10(-scale)); } else { // (scale > 0) BigInteger[] integerAndFraction; // An optimization before do a heavy division if ((scale > approxPrecision()) || (scale > getUnscaledValue().getLowestSetBit())) { // math.08=Rounding necessary throw new ArithmeticException("Rounding necessary"); //$NON-NLS-1$ } integerAndFraction = getUnscaledValue().divideAndRemainder( Multiplication.powerOf10(scale)); if (integerAndFraction[1].signum() != 0) { // It exists a non-zero fractional part // math.08=Rounding necessary throw new ArithmeticException("Rounding necessary"); //$NON-NLS-1$ } return integerAndFraction[0]; } } /** * Returns a string representation of this {@code BigDecimal}. This * representation always prints all significant digits of this value. * <p> * If the scale is negative or if {@code scale - precision >= 6} then * engineering notation is used. Engineering notation is similar to the * scientific notation except that the exponent is made to be a multiple of 3 * such that the integer part is >= 1 and < 1000. * * @return a string representation of {@code this} in engineering notation if * necessary. */ public String toEngineeringString() { String intString = getUnscaledValue().toString(); if (scale == 0) { return intString; } int begin = (getUnscaledValue().signum() < 0) ? 2 : 1; int end = intString.length(); double exponent = -scale + end - begin; StringBuilder result = new StringBuilder(intString); if ((scale > 0) && (exponent >= -6)) { if (exponent >= 0) { result.insert(end - (int) scale, '.'); } else { result.insert(begin - 1, "0."); //$NON-NLS-1$ result.insert(begin + 1, CH_ZEROS, 0, -(int) exponent - 1); } } else { int delta = end - begin; int rem = (int) (exponent % 3); if (rem != 0) { // adjust exponent so it is a multiple of three if (getUnscaledValue().signum() == 0) { // zero value rem = (rem < 0) ? -rem : 3 - rem; exponent += rem; } else { // nonzero value rem = (rem < 0) ? rem + 3 : rem; exponent -= rem; begin += rem; } if (delta < 3) { for (int i = rem - delta; i > 0; i--) { result.insert(end++, '0'); } } } if (end - begin >= 1) { result.insert(begin, '.'); end++; } if (exponent != 0) { result.insert(end, 'E'); if (exponent > 0) { result.insert(++end, '+'); } result.insert(++end, Long.toString((long) exponent)); } } return result.toString(); } /** * Returns a string representation of this {@code BigDecimal}. No scientific * notation is used. This methods adds zeros where necessary. * <p> * If this string representation is used to create a new instance, this * instance is generally not identical to {@code this} as the precision * changes. * <p> * {@code x.equals(new BigDecimal(x.toPlainString())} usually returns {@code * false}. * <p> * {@code x.compareTo(new BigDecimal(x.toPlainString())} returns {@code 0}. * * @return a string representation of {@code this} without exponent part. */ public String toPlainString() { String intStr = getUnscaledValue().toString(); if ((scale == 0) || ((isZero()) && (scale < 0))) { return intStr; } int begin = (signum() < 0) ? 1 : 0; double delta = scale; // We take space for all digits, plus a possible decimal point, plus 'scale' StringBuilder result = new StringBuilder(intStr.length() + 1 + Math.abs((int) scale)); if (begin == 1) { // If the number is negative, we insert a '-' character at front result.append('-'); } if (scale > 0) { delta -= (intStr.length() - begin); if (delta >= 0) { result.append("0."); //$NON-NLS-1$ // To append zeros after the decimal point for (; delta > CH_ZEROS.length; delta -= CH_ZEROS.length) { result.append(CH_ZEROS); } result.append(CH_ZEROS, 0, (int) delta); result.append(intStr.substring(begin)); } else { delta = begin - delta; result.append(intStr.substring(begin, (int) delta)); result.append('.'); result.append(intStr.substring((int) delta)); } } else { // (scale <= 0) result.append(intStr.substring(begin)); // To append trailing zeros for (; delta < -CH_ZEROS.length; delta += CH_ZEROS.length) { result.append(CH_ZEROS); } result.append(CH_ZEROS, 0, (int) -delta); } return result.toString(); } /** * Returns a canonical string representation of this {@code BigDecimal}. If * necessary, scientific notation is used. This representation always prints * all significant digits of this value. * <p> * If the scale is negative or if {@code scale - precision >= 6} then * scientific notation is used. * * @return a string representation of {@code this} in scientific notation if * necessary. */ @Override public String toString() { if (toStringImage != null) { return toStringImage; } if (bitLength < 32) { // TODO convert to double math dont cast to long :-( toStringImage = Conversion.toDecimalScaledString((long) smallValue, (int) scale); return toStringImage; } String intString = getUnscaledValue().toString(); if (scale == 0) { return intString; } int begin = (getUnscaledValue().signum() < 0) ? 2 : 1; int end = intString.length(); double exponent = -scale + end - begin; StringBuilder result = new StringBuilder(); result.append(intString); if ((scale > 0) && (exponent >= -6)) { if (exponent >= 0) { result.insert(end - (int) scale, '.'); } else { result.insert(begin - 1, "0."); //$NON-NLS-1$ result.insert(begin + 1, CH_ZEROS, 0, -(int) exponent - 1); } } else { if (end - begin >= 1) { result.insert(begin, '.'); end++; } result.insert(end, 'E'); if (exponent > 0) { result.insert(++end, '+'); } result.insert(++end, Long.toString((long) exponent)); } toStringImage = result.toString(); return toStringImage; } /** * Returns the unit in the last place (ULP) of this {@code BigDecimal} * instance. An ULP is the distance to the nearest big decimal with the same * precision. * <p> * The amount of a rounding error in the evaluation of a floating-point * operation is often expressed in ULPs. An error of 1 ULP is often seen as a * tolerable error. * <p> * For class {@code BigDecimal}, the ULP of a number is simply 10^(-scale). * <p> * For example, {@code new BigDecimal(0.1).ulp()} returns {@code 1E-55}. * * @return unit in the last place (ULP) of this {@code BigDecimal} instance. */ public BigDecimal ulp() { return valueOf(1, scale); } /** * Returns the unscaled value (mantissa) of this {@code BigDecimal} instance * as a {@code BigInteger}. The unscaled value can be computed as {@code this} * 10^(scale). * * @return unscaled value (this * 10^(scale)). */ public BigInteger unscaledValue() { return getUnscaledValue(); } /** * If the precision already was calculated it returns that value, otherwise it * calculates a very good approximation efficiently . Note that this value * will be {@code precision()} or {@code precision()-1} in the worst case. * * @return an approximation of {@code precision()} value */ private double approxPrecision() { return (precision > 0) ? precision : Math.floor((this.bitLength - 1) * LOG10_2) + 1; } private BigInteger getUnscaledValue() { if (intVal == null) { intVal = BigInteger.valueOf(smallValue); } return intVal; } private void initFrom(String val) { int begin = 0; // first index to be copied int offset = 0; int last = val.length(); // one past the last index to be copied String scaleString = null; // buffer for scale StringBuilder unscaledBuffer; // buffer for unscaled value unscaledBuffer = new StringBuilder(val.length()); // To skip a possible '+' symbol if ((offset < last) && (val.charAt(offset) == '+')) { offset++; begin++; // Fail if the next character is another sign. if ((offset < last) && (val.charAt(offset) == '+' || val.charAt(offset) == '-')) { throw new NumberFormatException("For input string: \"" + val + "\""); } } int counter = 0; boolean wasNonZero = false; // Accumulating all digits until a possible decimal point for (; (offset < last) && (val.charAt(offset) != '.') && (val.charAt(offset) != 'e') && (val.charAt(offset) != 'E'); offset++) { if (!wasNonZero) { if (val.charAt(offset) == '0') { counter++; } else { wasNonZero = true; } } } unscaledBuffer.append(val, begin, offset); // A decimal point was found if ((offset < last) && (val.charAt(offset) == '.')) { offset++; // Accumulating all digits until a possible exponent begin = offset; for (; (offset < last) && (val.charAt(offset) != 'e') && (val.charAt(offset) != 'E'); offset++) { if (!wasNonZero) { if (val.charAt(offset) == '0') { counter++; } else { wasNonZero = true; } } } scale = offset - begin; unscaledBuffer.append(val, begin, offset); } else { scale = 0; } // An exponent was found if ((offset < last) && ((val.charAt(offset) == 'e') || (val.charAt(offset) == 'E'))) { offset++; // Checking for a possible sign of scale begin = offset; if ((offset < last) && (val.charAt(offset) == '+')) { offset++; if ((offset < last) && (val.charAt(offset) != '-')) { begin++; } } // Accumulating all remaining digits scaleString = val.substring(begin, last); // Checking if the scale is defined scale = scale - Integer.parseInt(scaleString); if (scale != (int) scale) { // math.02=Scale out of range. throw new NumberFormatException("Scale out of range."); //$NON-NLS-1$ } } // Parsing the unscaled value String unscaled = unscaledBuffer.toString(); if (unscaled.length() < 16) { smallValue = parseUnscaled(unscaled); if (Double.isNaN(smallValue)) { throw new NumberFormatException("For input string: \"" + val + "\""); } bitLength = bitLength(smallValue); } else { setUnscaledValue(new BigInteger(unscaled)); } precision = unscaledBuffer.length() - counter; // Don't count leading zeros in the precision for (int i = 0; i < unscaledBuffer.length(); ++i) { char ch = unscaledBuffer.charAt(i); if (ch != '-' && ch != '0') { break; } --precision; } } /** * It does all rounding work of the public method {@code round(MathContext)}, * performing an inplace rounding without creating a new object. * * @param mc the {@code MathContext} for perform the rounding. * @see #round(MathContext) */ private void inplaceRound(MathContext mc) { int mcPrecision = mc.getPrecision(); if (approxPrecision() - mcPrecision < 0 || mcPrecision == 0) { return; } int discardedPrecision = precision() - mcPrecision; // If no rounding is necessary it returns immediately if ((discardedPrecision <= 0)) { return; } // When the number is small perform an efficient rounding if (this.bitLength < SMALL_VALUE_BITS) { smallRound(mc, discardedPrecision); return; } // Getting the integer part and the discarded fraction BigInteger sizeOfFraction = Multiplication.powerOf10(discardedPrecision); BigInteger[] integerAndFraction = getUnscaledValue().divideAndRemainder( sizeOfFraction); double newScale = scale - discardedPrecision; int compRem; BigDecimal tempBD; // If the discarded fraction is non-zero, perform rounding if (integerAndFraction[1].signum() != 0) { // To check if the discarded fraction >= 0.5 compRem = (integerAndFraction[1].abs().shiftLeftOneBit().compareTo(sizeOfFraction)); // To look if there is a carry compRem = roundingBehavior(integerAndFraction[0].testBit(0) ? 1 : 0, integerAndFraction[1].signum() * (5 + compRem), mc.getRoundingMode()); if (compRem != 0) { integerAndFraction[0] = integerAndFraction[0].add(BigInteger.valueOf(compRem)); } tempBD = new BigDecimal(integerAndFraction[0]); // If after to add the increment the precision changed, we normalize the // size if (tempBD.precision() > mcPrecision) { integerAndFraction[0] = integerAndFraction[0].divide(BigInteger.TEN); newScale--; } } // To update all internal fields scale = toIntScale(newScale); precision = mcPrecision; setUnscaledValue(integerAndFraction[0]); } private boolean isZero() { return bitLength == 0 && this.smallValue != -1; } private BigDecimal movePoint(double newScale) { if (isZero()) { return zeroScaledBy(Math.max(newScale, 0)); } /* * When: 'n'== Integer.MIN_VALUE isn't possible to call to * movePointRight(-n) since -Integer.MIN_VALUE == Integer.MIN_VALUE */ if (newScale >= 0) { if (bitLength < SMALL_VALUE_BITS) { return valueOf(smallValue, toIntScale(newScale)); } return new BigDecimal(getUnscaledValue(), toIntScale(newScale)); } if (-newScale < DOUBLE_TEN_POW.length && bitLength + DOUBLE_TEN_POW_BIT_LENGTH[(int) -newScale] < SMALL_VALUE_BITS) { return valueOf(smallValue * DOUBLE_TEN_POW[(int) -newScale], 0); } return new BigDecimal(Multiplication.multiplyByTenPow(getUnscaledValue(), (int) -newScale), 0); } private void setUnscaledValue(BigInteger unscaledValue) { this.intVal = unscaledValue; this.bitLength = unscaledValue.bitLength(); if (this.bitLength < SMALL_VALUE_BITS) { this.smallValue = unscaledValue.longValue(); } } /** * This method implements an efficient rounding for numbers which unscaled * value fits in the type {@code long}. * * @param mc the context to use * @param discardedPrecision the number of decimal digits that are discarded * @see #round(MathContext) */ private void smallRound(MathContext mc, int discardedPrecision) { long sizeOfFraction = (long) DOUBLE_TEN_POW[discardedPrecision]; long newScale = (long) scale - discardedPrecision; long unscaledVal = (long) smallValue; // TODO convert to double math dont // use longs // Getting the integer part and the discarded fraction long integer = unscaledVal / sizeOfFraction; long fraction = unscaledVal % sizeOfFraction; int compRem; // If the discarded fraction is non-zero perform rounding if (fraction != 0) { // To check if the discarded fraction >= 0.5 compRem = longCompareTo(Math.abs(fraction) << 1, sizeOfFraction); // To look if there is a carry integer += roundingBehavior(((int) integer) & 1, Long.signum(fraction) * (5 + compRem), mc.getRoundingMode()); // If after to add the increment the precision changed, we normalize the // size if (Math.log10(Math.abs(integer)) >= mc.getPrecision()) { integer /= 10; newScale--; } } // To update all internal fields scale = toIntScale(newScale); precision = mc.getPrecision(); smallValue = integer; bitLength = bitLength(integer); intVal = null; } /** * If {@code intVal} has a fractional part throws an exception, otherwise it * counts the number of bits of value and checks if it's out of the range of * the primitive type. If the number fits in the primitive type returns this * number as {@code long}, otherwise throws an exception. * * @param bitLengthOfType number of bits of the type whose value will be * calculated exactly * @return the exact value of the integer part of {@code BigDecimal} when is * possible * @throws ArithmeticException when rounding is necessary or the number don't * fit in the primitive type */ private long valueExact(int bitLengthOfType) { BigInteger bigInteger = toBigIntegerExact(); if (bigInteger.bitLength() < bitLengthOfType) { // It fits in the primitive type return bigInteger.longValue(); } // math.08=Rounding necessary throw new ArithmeticException("Rounding necessary"); //$NON-NLS-1$ } }