/* -*- Mode: java; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- * * The contents of this file are subject to the Netscape Public * License Version 1.1 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.mozilla.org/NPL/ * * Software distributed under the License is distributed on an "AS * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or * implied. See the License for the specific language governing * rights and limitations under the License. * * The Original Code is Rhino code, released * May 6, 1999. * * The Initial Developer of the Original Code is Netscape * Communications Corporation. Portions created by Netscape are * Copyright (C) 1997-1999 Netscape Communications Corporation. All * Rights Reserved. * * Contributor(s): * Waldemar Horwat * Roger Lawrence * * Alternatively, the contents of this file may be used under the * terms of the GNU Public License (the "GPL"), in which case the * provisions of the GPL are applicable instead of those above. * If you wish to allow use of your version of this file only * under the terms of the GPL and not to allow others to use your * version of this file under the NPL, indicate your decision by * deleting the provisions above and replace them with the notice * and other provisions required by the GPL. If you do not delete * the provisions above, a recipient may use your version of this * file under either the NPL or the GPL. */ // Modified by Google /**************************************************************** * * The author of this software is David M. Gay. * * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. * * Permission to use, copy, modify, and distribute this software for any * purpose without fee is hereby granted, provided that this entire notice * is included in all copies of any software which is or includes a copy * or modification of this software and in all copies of the supporting * documentation for such software. * * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. * ***************************************************************/ package com.google.gwt.dev.js.rhino; import java.math.BigInteger; class DToA { /* "-0.0000...(1073 zeros after decimal point)...0001\0" is the longest string that we could produce, * which occurs when printing -5e-324 in binary. We could compute a better estimate of the size of * the output string and malloc fewer bytes depending on d and base, but why bother? */ static final int DTOBASESTR_BUFFER_SIZE = 1078; static char BASEDIGIT(int digit) { return (char)((digit >= 10) ? 'a' - 10 + digit : '0' + digit); } static final int DTOSTR_STANDARD = 0, /* Either fixed or exponential format; round-trip */ DTOSTR_STANDARD_EXPONENTIAL = 1, /* Always exponential format; round-trip */ DTOSTR_FIXED = 2, /* Round to <precision> digits after the decimal point; exponential if number is large */ DTOSTR_EXPONENTIAL = 3, /* Always exponential format; <precision> significant digits */ DTOSTR_PRECISION = 4; /* Either fixed or exponential format; <precision> significant digits */ static final int Frac_mask = 0xfffff; static final int Exp_shift = 20; static final int Exp_msk1 = 0x100000; static final int Bias = 1023; static final int P = 53; static final int Exp_shift1 = 20; static final int Exp_mask = 0x7ff00000; static final int Bndry_mask = 0xfffff; static final int Log2P = 1; static final int Sign_bit = 0x80000000; static final int Exp_11 = 0x3ff00000; static final int Ten_pmax = 22; static final int Quick_max = 14; static final int Bletch = 0x10; static final int Frac_mask1 = 0xfffff; static final int Int_max = 14; static final int n_bigtens = 5; static final double tens[] = { 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22 }; static final double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; static int lo0bits(int y) { int k; int x = y; if ((x & 7) != 0) { if ((x & 1) != 0) return 0; if ((x & 2) != 0) { return 1; } return 2; } k = 0; if ((x & 0xffff) == 0) { k = 16; x >>>= 16; } if ((x & 0xff) == 0) { k += 8; x >>>= 8; } if ((x & 0xf) == 0) { k += 4; x >>>= 4; } if ((x & 0x3) == 0) { k += 2; x >>>= 2; } if ((x & 1) == 0) { k++; x >>>= 1; if ((x & 1) == 0) return 32; } return k; } /* Return the number (0 through 32) of most significant zero bits in x. */ static int hi0bits(int x) { int k = 0; if ((x & 0xffff0000) == 0) { k = 16; x <<= 16; } if ((x & 0xff000000) == 0) { k += 8; x <<= 8; } if ((x & 0xf0000000) == 0) { k += 4; x <<= 4; } if ((x & 0xc0000000) == 0) { k += 2; x <<= 2; } if ((x & 0x80000000) == 0) { k++; if ((x & 0x40000000) == 0) return 32; } return k; } static void stuffBits(byte bits[], int offset, int val) { bits[offset] = (byte)(val >> 24); bits[offset + 1] = (byte)(val >> 16); bits[offset + 2] = (byte)(val >> 8); bits[offset + 3] = (byte)(val); } /* Convert d into the form b*2^e, where b is an odd integer. b is the returned * Bigint and e is the returned binary exponent. Return the number of significant * bits in b in bits. d must be finite and nonzero. */ static BigInteger d2b(double d, int[] e, int[] bits) { byte dbl_bits[]; int i, k, y, z, de; long dBits = Double.doubleToLongBits(d); int d0 = (int)(dBits >>> 32); int d1 = (int)(dBits); z = d0 & Frac_mask; d0 &= 0x7fffffff; /* clear sign bit, which we ignore */ if ((de = (int)(d0 >>> Exp_shift)) != 0) z |= Exp_msk1; if ((y = d1) != 0) { dbl_bits = new byte[8]; k = lo0bits(y); y >>>= k; if (k != 0) { stuffBits(dbl_bits, 4, y | z << (32 - k)); z >>= k; } else stuffBits(dbl_bits, 4, y); stuffBits(dbl_bits, 0, z); i = (z != 0) ? 2 : 1; } else { // JS_ASSERT(z); dbl_bits = new byte[4]; k = lo0bits(z); z >>>= k; stuffBits(dbl_bits, 0, z); k += 32; i = 1; } if (de != 0) { e[0] = de - Bias - (P-1) + k; bits[0] = P - k; } else { e[0] = de - Bias - (P-1) + 1 + k; bits[0] = 32*i - hi0bits(z); } return new BigInteger(dbl_bits); } public static String JS_dtobasestr(int base, double d) { char[] buffer; /* The output string */ int p; /* index to current position in the buffer */ int pInt; /* index to the beginning of the integer part of the string */ int q; int digit; double di; /* d truncated to an integer */ double df; /* The fractional part of d */ // JS_ASSERT(base >= 2 && base <= 36); buffer = new char[DTOBASESTR_BUFFER_SIZE]; p = 0; if (d < 0.0) { buffer[p++] = '-'; d = -d; } /* Check for Infinity and NaN */ if (Double.isNaN(d)) return "NaN"; else if (Double.isInfinite(d)) return "Infinity"; /* Output the integer part of d with the digits in reverse order. */ pInt = p; di = (int)d; BigInteger b = BigInteger.valueOf((int)di); String intDigits = b.toString(base); intDigits.getChars(0, intDigits.length(), buffer, p); p += intDigits.length(); df = d - di; if (df != 0.0) { /* We have a fraction. */ buffer[p++] = '.'; long dBits = Double.doubleToLongBits(d); int word0 = (int)(dBits >> 32); int word1 = (int)(dBits); int[] e = new int[1]; int[] bbits = new int[1]; b = d2b(df, e, bbits); // JS_ASSERT(e < 0); /* At this point df = b * 2^e. e must be less than zero because 0 < df < 1. */ int s2 = -(word0 >>> Exp_shift1 & Exp_mask >> Exp_shift1); if (s2 == 0) s2 = -1; s2 += Bias + P; /* 1/2^s2 = (nextDouble(d) - d)/2 */ // JS_ASSERT(-s2 < e); BigInteger mlo = BigInteger.valueOf(1); BigInteger mhi = mlo; if ((word1 == 0) && ((word0 & Bndry_mask) == 0) && ((word0 & (Exp_mask & Exp_mask << 1)) != 0)) { /* The special case. Here we want to be within a quarter of the last input significant digit instead of one half of it when the output string's value is less than d. */ s2 += Log2P; mhi = BigInteger.valueOf(1<<Log2P); } b = b.shiftLeft(e[0] + s2); BigInteger s = BigInteger.valueOf(1); s = s.shiftLeft(s2); /* At this point we have the following: * s = 2^s2; * 1 > df = b/2^s2 > 0; * (d - prevDouble(d))/2 = mlo/2^s2; * (nextDouble(d) - d)/2 = mhi/2^s2. */ BigInteger bigBase = BigInteger.valueOf(base); boolean done = false; do { b = b.multiply(bigBase); BigInteger[] divResult = b.divideAndRemainder(s); b = divResult[1]; digit = (char)(divResult[0].intValue()); if (mlo == mhi) mlo = mhi = mlo.multiply(bigBase); else { mlo = mlo.multiply(bigBase); mhi = mhi.multiply(bigBase); } /* Do we yet have the shortest string that will round to d? */ int j = b.compareTo(mlo); /* j is b/2^s2 compared with mlo/2^s2. */ BigInteger delta = s.subtract(mhi); int j1 = (delta.signum() <= 0) ? 1 : b.compareTo(delta); /* j1 is b/2^s2 compared with 1 - mhi/2^s2. */ if (j1 == 0 && ((word1 & 1) == 0)) { if (j > 0) digit++; done = true; } else if (j < 0 || (j == 0 && ((word1 & 1) == 0))) { if (j1 > 0) { /* Either dig or dig+1 would work here as the least significant digit. Use whichever would produce an output value closer to d. */ b = b.shiftLeft(1); j1 = b.compareTo(s); if (j1 > 0) /* The even test (|| (j1 == 0 && (digit & 1))) is not here because it messes up odd base output * such as 3.5 in base 3. */ digit++; } done = true; } else if (j1 > 0) { digit++; done = true; } // JS_ASSERT(digit < (uint32)base); buffer[p++] = BASEDIGIT(digit); } while (!done); } return new String(buffer, 0, p); } /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. * * Inspired by "How to Print Floating-Point Numbers Accurately" by * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101]. * * Modifications: * 1. Rather than iterating, we use a simple numeric overestimate * to determine k = floor(log10(d)). We scale relevant * quantities using O(log2(k)) rather than O(k) multiplications. * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't * try to generate digits strictly left to right. Instead, we * compute with fewer bits and propagate the carry if necessary * when rounding the final digit up. This is often faster. * 3. Under the assumption that input will be rounded nearest, * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. * That is, we allow equality in stopping tests when the * round-nearest rule will give the same floating-point value * as would satisfaction of the stopping test with strict * inequality. * 4. We remove common factors of powers of 2 from relevant * quantities. * 5. When converting floating-point integers less than 1e16, * we use floating-point arithmetic rather than resorting * to multiple-precision integers. * 6. When asked to produce fewer than 15 digits, we first try * to get by with floating-point arithmetic; we resort to * multiple-precision integer arithmetic only if we cannot * guarantee that the floating-point calculation has given * the correctly rounded result. For k requested digits and * "uniformly" distributed input, the probability is * something like 10^(k-15) that we must resort to the Long * calculation. */ static int word0(double d) { long dBits = Double.doubleToLongBits(d); return (int)(dBits >> 32); } static double setWord0(double d, int i) { long dBits = Double.doubleToLongBits(d); dBits = ((long)i << 32) | (dBits & 0x0FFFFFFFFL); return Double.longBitsToDouble(dBits); } static int word1(double d) { long dBits = Double.doubleToLongBits(d); return (int)(dBits); } /* Return b * 5^k. k must be nonnegative. */ // XXXX the C version built a cache of these static BigInteger pow5mult(BigInteger b, int k) { return b.multiply(BigInteger.valueOf(5).pow(k)); } static boolean roundOff(StringBuffer buf) { char lastCh; while ((lastCh = buf.charAt(buf.length() - 1)) == '9') { buf.setLength(buf.length() - 1); if (buf.length() == 0) { return true; } } buf.append((char)(lastCh + 1)); return false; } /* Always emits at least one digit. */ /* If biasUp is set, then rounding in modes 2 and 3 will round away from zero * when the number is exactly halfway between two representable values. For example, * rounding 2.5 to zero digits after the decimal point will return 3 and not 2. * 2.49 will still round to 2, and 2.51 will still round to 3. */ /* bufsize should be at least 20 for modes 0 and 1. For the other modes, * bufsize should be two greater than the maximum number of output characters expected. */ static int JS_dtoa(double d, int mode, boolean biasUp, int ndigits, boolean[] sign, StringBuffer buf) { /* Arguments ndigits, decpt, sign are similar to those of ecvt and fcvt; trailing zeros are suppressed from the returned string. If not null, *rve is set to point to the end of the return value. If d is +-Infinity or NaN, then *decpt is set to 9999. mode: 0 ==> shortest string that yields d when read in and rounded to nearest. 1 ==> like 0, but with Steele & White stopping rule; e.g. with IEEE P754 arithmetic , mode 0 gives 1e23 whereas mode 1 gives 9.999999999999999e22. 2 ==> max(1,ndigits) significant digits. This gives a return value similar to that of ecvt, except that trailing zeros are suppressed. 3 ==> through ndigits past the decimal point. This gives a return value similar to that from fcvt, except that trailing zeros are suppressed, and ndigits can be negative. 4-9 should give the same return values as 2-3, i.e., 4 <= mode <= 9 ==> same return as mode 2 + (mode & 1). These modes are mainly for debugging; often they run slower but sometimes faster than modes 2-3. 4,5,8,9 ==> left-to-right digit generation. 6-9 ==> don't try fast floating-point estimate (if applicable). Values of mode other than 0-9 are treated as mode 0. Sufficient space is allocated to the return value to hold the suppressed trailing zeros. */ int b2, b5, i, ieps, ilim, ilim0, ilim1, j, j1, k, k0, m2, m5, s2, s5; char dig; long L; long x; BigInteger b, b1, delta, mlo, mhi, S; int[] be = new int[1]; int[] bbits = new int[1]; double d2, ds, eps; boolean spec_case, denorm, k_check, try_quick, leftright; if ((word0(d) & Sign_bit) != 0) { /* set sign for everything, including 0's and NaNs */ sign[0] = true; // word0(d) &= ~Sign_bit; /* clear sign bit */ d = setWord0(d, word0(d) & ~Sign_bit); } else sign[0] = false; if ((word0(d) & Exp_mask) == Exp_mask) { /* Infinity or NaN */ buf.append(((word1(d) == 0) && ((word0(d) & Frac_mask) == 0)) ? "Infinity" : "NaN"); return 9999; } if (d == 0) { // no_digits: buf.setLength(0); buf.append('0'); /* copy "0" to buffer */ return 1; } b = d2b(d, be, bbits); if ((i = (int)(word0(d) >>> Exp_shift1 & (Exp_mask>>Exp_shift1))) != 0) { d2 = setWord0(d, (word0(d) & Frac_mask1) | Exp_11); /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 * log10(x) = log(x) / log(10) * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) * * This suggests computing an approximation k to log10(d) by * * k = (i - Bias)*0.301029995663981 * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); * * We want k to be too large rather than too small. * The error in the first-order Taylor series approximation * is in our favor, so we just round up the constant enough * to compensate for any error in the multiplication of * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, * adding 1e-13 to the constant term more than suffices. * Hence we adjust the constant term to 0.1760912590558. * (We could get a more accurate k by invoking log10, * but this is probably not worthwhile.) */ i -= Bias; denorm = false; } else { /* d is denormalized */ i = bbits[0] + be[0] + (Bias + (P-1) - 1); x = (i > 32) ? word0(d) << (64 - i) | word1(d) >>> (i - 32) : word1(d) << (32 - i); // d2 = x; // word0(d2) -= 31*Exp_msk1; /* adjust exponent */ d2 = setWord0(x, word0(x) - 31*Exp_msk1); i -= (Bias + (P-1) - 1) + 1; denorm = true; } /* At this point d = f*2^i, where 1 <= f < 2. d2 is an approximation of f. */ ds = (d2-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981; k = (int)ds; if (ds < 0.0 && ds != k) k--; /* want k = floor(ds) */ k_check = true; if (k >= 0 && k <= Ten_pmax) { if (d < tens[k]) k--; k_check = false; } /* At this point floor(log10(d)) <= k <= floor(log10(d))+1. If k_check is zero, we're guaranteed that k = floor(log10(d)). */ j = bbits[0] - i - 1; /* At this point d = b/2^j, where b is an odd integer. */ if (j >= 0) { b2 = 0; s2 = j; } else { b2 = -j; s2 = 0; } if (k >= 0) { b5 = 0; s5 = k; s2 += k; } else { b2 -= k; b5 = -k; s5 = 0; } /* At this point d/10^k = (b * 2^b2 * 5^b5) / (2^s2 * 5^s5), where b is an odd integer, b2 >= 0, b5 >= 0, s2 >= 0, and s5 >= 0. */ if (mode < 0 || mode > 9) mode = 0; try_quick = true; if (mode > 5) { mode -= 4; try_quick = false; } leftright = true; ilim = ilim1 = 0; switch(mode) { case 0: case 1: ilim = ilim1 = -1; i = 18; ndigits = 0; break; case 2: leftright = false; /* no break */ case 4: if (ndigits <= 0) ndigits = 1; ilim = ilim1 = i = ndigits; break; case 3: leftright = false; /* no break */ case 5: i = ndigits + k + 1; ilim = i; ilim1 = i - 1; if (i <= 0) i = 1; } /* ilim is the maximum number of significant digits we want, based on k and ndigits. */ /* ilim1 is the maximum number of significant digits we want, based on k and ndigits, when it turns out that k was computed too high by one. */ boolean fast_failed = false; if (ilim >= 0 && ilim <= Quick_max && try_quick) { /* Try to get by with floating-point arithmetic. */ i = 0; d2 = d; k0 = k; ilim0 = ilim; ieps = 2; /* conservative */ /* Divide d by 10^k, keeping track of the roundoff error and avoiding overflows. */ if (k > 0) { ds = tens[k&0xf]; j = k >> 4; if ((j & Bletch) != 0) { /* prevent overflows */ j &= Bletch - 1; d /= bigtens[n_bigtens-1]; ieps++; } for(; (j != 0); j >>= 1, i++) if ((j & 1) != 0) { ieps++; ds *= bigtens[i]; } d /= ds; } else if ((j1 = -k) != 0) { d *= tens[j1 & 0xf]; for(j = j1 >> 4; (j != 0); j >>= 1, i++) if ((j & 1) != 0) { ieps++; d *= bigtens[i]; } } /* Check that k was computed correctly. */ if (k_check && d < 1.0 && ilim > 0) { if (ilim1 <= 0) fast_failed = true; else { ilim = ilim1; k--; d *= 10.; ieps++; } } /* eps bounds the cumulative error. */ // eps = ieps*d + 7.0; // word0(eps) -= (P-1)*Exp_msk1; eps = ieps*d + 7.0; eps = setWord0(eps, word0(eps) - (P-1)*Exp_msk1); if (ilim == 0) { S = mhi = null; d -= 5.0; if (d > eps) { buf.append('1'); k++; return k + 1; } if (d < -eps) { buf.setLength(0); buf.append('0'); /* copy "0" to buffer */ return 1; } fast_failed = true; } if (!fast_failed) { fast_failed = true; if (leftright) { /* Use Steele & White method of only * generating digits needed. */ eps = 0.5/tens[ilim-1] - eps; for(i = 0;;) { L = (long)d; d -= L; buf.append((char)('0' + L)); if (d < eps) { return k + 1; } if (1.0 - d < eps) { // goto bump_up; char lastCh; while (true) { lastCh = buf.charAt(buf.length() - 1); buf.setLength(buf.length() - 1); if (lastCh != '9') break; if (buf.length() == 0) { k++; lastCh = '0'; break; } } buf.append((char)(lastCh + 1)); return k + 1; } if (++i >= ilim) break; eps *= 10.0; d *= 10.0; } } else { /* Generate ilim digits, then fix them up. */ eps *= tens[ilim-1]; for(i = 1;; i++, d *= 10.0) { L = (long)d; d -= L; buf.append((char)('0' + L)); if (i == ilim) { if (d > 0.5 + eps) { // goto bump_up; char lastCh; while (true) { lastCh = buf.charAt(buf.length() - 1); buf.setLength(buf.length() - 1); if (lastCh != '9') break; if (buf.length() == 0) { k++; lastCh = '0'; break; } } buf.append((char)(lastCh + 1)); return k + 1; } else if (d < 0.5 - eps) { while (buf.charAt(buf.length() - 1) == '0') buf.setLength(buf.length() - 1); // while(*--s == '0') ; // s++; return k + 1; } break; } } } } if (fast_failed) { buf.setLength(0); d = d2; k = k0; ilim = ilim0; } } /* Do we have a "small" integer? */ if (be[0] >= 0 && k <= Int_max) { /* Yes. */ ds = tens[k]; if (ndigits < 0 && ilim <= 0) { S = mhi = null; if (ilim < 0 || d < 5*ds || (!biasUp && d == 5*ds)) { buf.setLength(0); buf.append('0'); /* copy "0" to buffer */ return 1; } buf.append('1'); k++; return k + 1; } for(i = 1;; i++) { L = (long) (d / ds); d -= L*ds; buf.append((char)('0' + L)); if (i == ilim) { d += d; if ((d > ds) || (d == ds && (((L & 1) != 0) || biasUp))) { // bump_up: // while(*--s == '9') // if (s == buf) { // k++; // *s = '0'; // break; // } // ++*s++; char lastCh; while (true) { lastCh = buf.charAt(buf.length() - 1); buf.setLength(buf.length() - 1); if (lastCh != '9') break; if (buf.length() == 0) { k++; lastCh = '0'; break; } } buf.append((char)(lastCh + 1)); } break; } d *= 10.0; if (d == 0) break; } return k + 1; } m2 = b2; m5 = b5; mhi = mlo = null; if (leftright) { if (mode < 2) { i = (denorm) ? be[0] + (Bias + (P-1) - 1 + 1) : 1 + P - bbits[0]; /* i is 1 plus the number of trailing zero bits in d's significand. Thus, (2^m2 * 5^m5) / (2^(s2+i) * 5^s5) = (1/2 lsb of d)/10^k. */ } else { j = ilim - 1; if (m5 >= j) m5 -= j; else { s5 += j -= m5; b5 += j; m5 = 0; } if ((i = ilim) < 0) { m2 -= i; i = 0; } /* (2^m2 * 5^m5) / (2^(s2+i) * 5^s5) = (1/2 * 10^(1-ilim))/10^k. */ } b2 += i; s2 += i; mhi = BigInteger.valueOf(1); /* (mhi * 2^m2 * 5^m5) / (2^s2 * 5^s5) = one-half of last printed (when mode >= 2) or input (when mode < 2) significant digit, divided by 10^k. */ } /* We still have d/10^k = (b * 2^b2 * 5^b5) / (2^s2 * 5^s5). Reduce common factors in b2, m2, and s2 without changing the equalities. */ if (m2 > 0 && s2 > 0) { i = (m2 < s2) ? m2 : s2; b2 -= i; m2 -= i; s2 -= i; } /* Fold b5 into b and m5 into mhi. */ if (b5 > 0) { if (leftright) { if (m5 > 0) { mhi = pow5mult(mhi, m5); b1 = mhi.multiply(b); b = b1; } if ((j = b5 - m5) != 0) b = pow5mult(b, j); } else b = pow5mult(b, b5); } /* Now we have d/10^k = (b * 2^b2) / (2^s2 * 5^s5) and (mhi * 2^m2) / (2^s2 * 5^s5) = one-half of last printed or input significant digit, divided by 10^k. */ S = BigInteger.valueOf(1); if (s5 > 0) S = pow5mult(S, s5); /* Now we have d/10^k = (b * 2^b2) / (S * 2^s2) and (mhi * 2^m2) / (S * 2^s2) = one-half of last printed or input significant digit, divided by 10^k. */ /* Check for special case that d is a normalized power of 2. */ spec_case = false; if (mode < 2) { if ( (word1(d) == 0) && ((word0(d) & Bndry_mask) == 0) && ((word0(d) & (Exp_mask & Exp_mask << 1)) != 0) ) { /* The special case. Here we want to be within a quarter of the last input significant digit instead of one half of it when the decimal output string's value is less than d. */ b2 += Log2P; s2 += Log2P; spec_case = true; } } /* Arrange for convenient computation of quotients: * shift left if necessary so divisor has 4 leading 0 bits. * * Perhaps we should just compute leading 28 bits of S once * and for all and pass them and a shift to quorem, so it * can do shifts and ors to compute the numerator for q. */ byte [] S_bytes = S.toByteArray(); int S_hiWord = 0; for (int idx = 0; idx < 4; idx++) { S_hiWord = (S_hiWord << 8); if (idx < S_bytes.length) S_hiWord |= (S_bytes[idx] & 0xFF); } if ((i = (((s5 != 0) ? 32 - hi0bits(S_hiWord) : 1) + s2) & 0x1f) != 0) i = 32 - i; /* i is the number of leading zero bits in the most significant word of S*2^s2. */ if (i > 4) { i -= 4; b2 += i; m2 += i; s2 += i; } else if (i < 4) { i += 28; b2 += i; m2 += i; s2 += i; } /* Now S*2^s2 has exactly four leading zero bits in its most significant word. */ if (b2 > 0) b = b.shiftLeft(b2); if (s2 > 0) S = S.shiftLeft(s2); /* Now we have d/10^k = b/S and (mhi * 2^m2) / S = maximum acceptable error, divided by 10^k. */ if (k_check) { if (b.compareTo(S) < 0) { k--; b = b.multiply(BigInteger.valueOf(10)); /* we botched the k estimate */ if (leftright) mhi = mhi.multiply(BigInteger.valueOf(10)); ilim = ilim1; } } /* At this point 1 <= d/10^k = b/S < 10. */ if (ilim <= 0 && mode > 2) { /* We're doing fixed-mode output and d is less than the minimum nonzero output in this mode. Output either zero or the minimum nonzero output depending on which is closer to d. */ if ((ilim < 0 ) || ((i = b.compareTo(S = S.multiply(BigInteger.valueOf(5)))) < 0) || ((i == 0 && !biasUp))) { /* Always emit at least one digit. If the number appears to be zero using the current mode, then emit one '0' digit and set decpt to 1. */ /*no_digits: k = -1 - ndigits; goto ret; */ buf.setLength(0); buf.append('0'); /* copy "0" to buffer */ return 1; // goto no_digits; } // one_digit: buf.append('1'); k++; return k + 1; } if (leftright) { if (m2 > 0) mhi = mhi.shiftLeft(m2); /* Compute mlo -- check for special case * that d is a normalized power of 2. */ mlo = mhi; if (spec_case) { mhi = mlo; mhi = mhi.shiftLeft(Log2P); } /* mlo/S = maximum acceptable error, divided by 10^k, if the output is less than d. */ /* mhi/S = maximum acceptable error, divided by 10^k, if the output is greater than d. */ for(i = 1;;i++) { BigInteger[] divResult = b.divideAndRemainder(S); b = divResult[1]; dig = (char)(divResult[0].intValue() + '0'); /* Do we yet have the shortest decimal string * that will round to d? */ j = b.compareTo(mlo); /* j is b/S compared with mlo/S. */ delta = S.subtract(mhi); j1 = (delta.signum() <= 0) ? 1 : b.compareTo(delta); /* j1 is b/S compared with 1 - mhi/S. */ if ((j1 == 0) && (mode == 0) && ((word1(d) & 1) == 0)) { if (dig == '9') { buf.append('9'); if (roundOff(buf)) { k++; buf.append('1'); } return k + 1; // goto round_9_up; } if (j > 0) dig++; buf.append(dig); return k + 1; } if ((j < 0) || ((j == 0) && (mode == 0) && ((word1(d) & 1) == 0) )) { if (j1 > 0) { /* Either dig or dig+1 would work here as the least significant decimal digit. Use whichever would produce a decimal value closer to d. */ b = b.shiftLeft(1); j1 = b.compareTo(S); if (((j1 > 0) || (j1 == 0 && (((dig & 1) == 1) || biasUp))) && (dig++ == '9')) { buf.append('9'); if (roundOff(buf)) { k++; buf.append('1'); } return k + 1; // goto round_9_up; } } buf.append(dig); return k + 1; } if (j1 > 0) { if (dig == '9') { /* possible if i == 1 */ // round_9_up: // *s++ = '9'; // goto roundoff; buf.append('9'); if (roundOff(buf)) { k++; buf.append('1'); } return k + 1; } buf.append((char)(dig + 1)); return k + 1; } buf.append(dig); if (i == ilim) break; b = b.multiply(BigInteger.valueOf(10)); if (mlo == mhi) mlo = mhi = mhi.multiply(BigInteger.valueOf(10)); else { mlo = mlo.multiply(BigInteger.valueOf(10)); mhi = mhi.multiply(BigInteger.valueOf(10)); } } } else for(i = 1;; i++) { // (char)(dig = quorem(b,S) + '0'); BigInteger[] divResult = b.divideAndRemainder(S); b = divResult[1]; dig = (char)(divResult[0].intValue() + '0'); buf.append(dig); if (i >= ilim) break; b = b.multiply(BigInteger.valueOf(10)); } /* Round off last digit */ b = b.shiftLeft(1); j = b.compareTo(S); if ((j > 0) || (j == 0 && (((dig & 1) == 1) || biasUp))) { // roundoff: // while(*--s == '9') // if (s == buf) { // k++; // *s++ = '1'; // goto ret; // } // ++*s++; if (roundOff(buf)) { k++; buf.append('1'); return k + 1; } } else { /* Strip trailing zeros */ while (buf.charAt(buf.length() - 1) == '0') buf.setLength(buf.length() - 1); // while(*--s == '0') ; // s++; } // ret: // Bfree(S); // if (mhi) { // if (mlo && mlo != mhi) // Bfree(mlo); // Bfree(mhi); // } // ret1: // Bfree(b); // JS_ASSERT(s < buf + bufsize); return k + 1; } /* Mapping of JSDToStrMode -> JS_dtoa mode */ private static final int dtoaModes[] = { 0, /* DTOSTR_STANDARD */ 0, /* DTOSTR_STANDARD_EXPONENTIAL, */ 3, /* DTOSTR_FIXED, */ 2, /* DTOSTR_EXPONENTIAL, */ 2}; /* DTOSTR_PRECISION */ static void JS_dtostr(StringBuffer buffer, int mode, int precision, double d) { int decPt; /* Position of decimal point relative to first digit returned by JS_dtoa */ boolean[] sign = new boolean[1]; /* true if the sign bit was set in d */ int nDigits; /* Number of significand digits returned by JS_dtoa */ // JS_ASSERT(bufferSize >= (size_t)(mode <= DTOSTR_STANDARD_EXPONENTIAL ? DTOSTR_STANDARD_BUFFER_SIZE : // DTOSTR_VARIABLE_BUFFER_SIZE(precision))); if (mode == DTOSTR_FIXED && (d >= 1e21 || d <= -1e21)) mode = DTOSTR_STANDARD; /* Change mode here rather than below because the buffer may not be large enough to hold a large integer. */ decPt = JS_dtoa(d, dtoaModes[mode], mode >= DTOSTR_FIXED, precision, sign, buffer); nDigits = buffer.length(); /* If Infinity, -Infinity, or NaN, return the string regardless of the mode. */ if (decPt != 9999) { boolean exponentialNotation = false; int minNDigits = 0; /* Minimum number of significand digits required by mode and precision */ int p; int q; switch (mode) { case DTOSTR_STANDARD: if (decPt < -5 || decPt > 21) exponentialNotation = true; else minNDigits = decPt; break; case DTOSTR_FIXED: if (precision >= 0) minNDigits = decPt + precision; else minNDigits = decPt; break; case DTOSTR_EXPONENTIAL: // JS_ASSERT(precision > 0); minNDigits = precision; /* Fall through */ case DTOSTR_STANDARD_EXPONENTIAL: exponentialNotation = true; break; case DTOSTR_PRECISION: // JS_ASSERT(precision > 0); minNDigits = precision; if (decPt < -5 || decPt > precision) exponentialNotation = true; break; } /* If the number has fewer than minNDigits, pad it with zeros at the end */ if (nDigits < minNDigits) { p = minNDigits; nDigits = minNDigits; do { buffer.append('0'); } while (buffer.length() != p); } if (exponentialNotation) { /* Insert a decimal point if more than one significand digit */ if (nDigits != 1) { buffer.insert(1, '.'); } buffer.append('e'); if ((decPt - 1) >= 0) buffer.append('+'); buffer.append(decPt - 1); // JS_snprintf(numEnd, bufferSize - (numEnd - buffer), "e%+d", decPt-1); } else if (decPt != nDigits) { /* Some kind of a fraction in fixed notation */ // JS_ASSERT(decPt <= nDigits); if (decPt > 0) { /* dd...dd . dd...dd */ buffer.insert(decPt, '.'); } else { /* 0 . 00...00dd...dd */ for (int i = 0; i < 1 - decPt; i++) buffer.insert(0, '0'); buffer.insert(1, '.'); } } } /* If negative and neither -0.0 nor NaN, output a leading '-'. */ if (sign[0] && !(word0(d) == Sign_bit && word1(d) == 0) && !((word0(d) & Exp_mask) == Exp_mask && ((word1(d) != 0) || ((word0(d) & Frac_mask) != 0)))) { buffer.insert(0, '-'); } } }