/******************************************************************************* * Copyright 2012 Analog Devices, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. ********************************************************************************/ package com.analog.lyric.dimple.factorfunctions; import com.analog.lyric.dimple.factorfunctions.core.FactorFunction; import com.analog.lyric.dimple.model.values.Value; /** * Deterministic constant power function. * <p> * The constant power value is * specified in the constructor. This is a deterministic directed factor * (if smoothing is not enabled). * <p> * Optional smoothing may be applied, by providing a smoothing value in * the constructor. If smoothing is enabled, the distribution is * smoothed by exp(-difference^2/smoothing), where difference is the * distance between the output value and the deterministic output value * for the corresponding inputs. * <p> * The variables are ordered as follows in the argument list: * <ol> * <li> Output (Output = Base^Power) * <li> Base (double or integer) * </ol> * * Note: This factor is not compatible with negative values of Base with * fractional values of Power, which would result in a complex output. * */ public class ConstantPower extends FactorFunction { protected double _power; protected double _beta = 0; protected boolean _smoothingSpecified = false; public ConstantPower(double power) {this(power, 0);} public ConstantPower(double power, double smoothing) { super(); _power = power; if (smoothing > 0) { _beta = 1 / smoothing; _smoothingSpecified = true; } } @Override public final double evalEnergy(Value[] arguments) { final double result = arguments[0].getDouble(); final double base = arguments[1].getDouble(); final double computedResult = Math.pow(base, _power); if (_smoothingSpecified) { final double diff = computedResult - result; final double potential = diff*diff; return potential*_beta; } else { return (computedResult == result) ? 0 : Double.POSITIVE_INFINITY; } } @Override public final boolean isDirected() {return true;} @Override public final int[] getDirectedToIndices() {return new int[]{0};} @Override public final boolean isDeterministicDirected() {return !_smoothingSpecified;} @Override public final void evalDeterministic(Value[] arguments) { final Double base = arguments[1].getDouble(); arguments[0].setDouble(Math.pow(base, _power)); // Replace the output value } }