/* -*- tab-width: 4 -*- * * Electric(tm) VLSI Design System * * File: Flat.java * Asynchronous Logic Simulator network flattening * Original C Code written by Brent Serbin and Peter J. Gallant * Translated to Java by Steven M. Rubin, Sun Microsystems. * * Copyright (c) 2005 Sun Microsystems and Static Free Software * * Electric(tm) is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * Electric(tm) is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Electric(tm); see the file COPYING. If not, write to * the Free Software Foundation, Inc., 59 Temple Place, Suite 330, * Boston, Mass 02111-1307, USA. */ package com.sun.electric.tool.simulation.als; import com.sun.electric.database.hierarchy.Cell; import com.sun.electric.database.text.TextUtils; import com.sun.electric.tool.simulation.als.ALS.IO; import com.sun.electric.tool.simulation.als.ALS.Stat; import java.util.ArrayList; import java.util.Iterator; import java.util.List; /** * Class to flatten circuitry for the ALS Simulator. */ public class Flat { private ALS als; private ALS.Model primPtr2; Flat(ALS als) { this.als = als; } /** * Method to call a series of routines which convert the hierarchical * network description into a flattened database representation. The actual * simulation must take place on the flattened network. Returns true on error. */ boolean flattenNetwork(Cell cell) { /* * create a "dummy" level to use as a mixed signal destination for plotting and * screen display. This level should be bypassed for structure checking and general * simulation, however, so in the following code, references to "als.cellRoot" * have been changed to als.cellRoot.next (pointing to mainCell). * Peter Gallant July 16, 1990 */ als.cellRoot = new ALS.Connect(); als.cellRoot.instName = "[MIXED_SIGNAL_LEVEL]"; als.cellRoot.modelName = als.cellRoot.instName; als.cellRoot.exList = new ArrayList<ALS.ALSExport>(); als.cellRoot.parent = null; als.cellRoot.child = null; als.cellRoot.next = null; ALS.Connect tempRoot = als.cellRoot; // get upper-case version of main proto String mainName = cell.getName().toUpperCase(); als.cellRoot = new ALS.Connect(); als.cellRoot.instName = mainName; als.cellRoot.modelName = als.cellRoot.instName; als.cellRoot.exList = new ArrayList<ALS.ALSExport>(); als.cellRoot.parent = null; als.cellRoot.child = null; als.cellRoot.next = null; // these lines link the mixed level as the head followed by mainCell PJG tempRoot.next = als.cellRoot; // shouldn't this be null? ... smr tempRoot.child = als.cellRoot; als.cellRoot = tempRoot; // this code checks to see if model mainCell is present in the netlist PJG ALS.Model modHead = findModel(mainName); if (modHead == null) return true; for(ALS.ALSExport exHead : modHead.exList) { findXRefEntry(als.cellRoot.next, (String)exHead.nodeName); } if (flattenModel(als.cellRoot.next)) return true; for(ALS.Node nodeHead : als.nodeList) { if (nodeHead.load < 1) nodeHead.load = 1; } return false; } /** * Method to flatten a single model. If other models are referenced * in connection statements in the netlist, this routine is called recursively * until a totally flat model is obtained. Returns true on error. * * Calling Arguments: * cellHead = pointer to a data structure containing information about * the model that is going to be flattened */ private boolean flattenModel(ALS.Connect cellHead) { ALS.Model modHead = findModel(cellHead.modelName); if (modHead == null) return true; switch (modHead.type) { case 'F': if (processFunction(cellHead, modHead)) return true; break; case 'G': processGate(cellHead, modHead); break; case 'M': if (processConnectList(cellHead, (ALS.Connect)modHead.ptr)) return true; for (ALS.Connect subCell = cellHead.child; subCell != null; subCell = subCell.next) { if (flattenModel(subCell)) return true; } break; } if (modHead.setList.size() != 0) { processSetEntry(cellHead, modHead.setList); } return false; } /** * Method to step through the connection list specified by the * connection list pointer (conHead). Values are entered into the cross * reference table for the present level of hierarchy and new data structures * are created for the lower level of hierarchy to store their cross * reference tables. Returns true on error. * * Calling Arguments: * cellHead = pointer to the cross reference data structure for the model * that is going to be flattened * conHead = pointer to a list of connection statements for the model * that is being flattened by this procedure */ private boolean processConnectList(ALS.Connect cellHead, ALS.Connect conHead) { while (conHead != null) { ALS.Connect cellPtr2 = new ALS.Connect(); cellPtr2.instName = conHead.instName; cellPtr2.modelName = conHead.modelName; cellPtr2.exList = new ArrayList<ALS.ALSExport>(); cellPtr2.parent = cellHead; cellPtr2.child = null; cellPtr2.next = cellHead.child; cellHead.child = cellPtr2; ALS.Model modHead = findModel(conHead.modelName); if (modHead == null) return true; Iterator<ALS.ALSExport> it = modHead.exList.iterator(); for(ALS.ALSExport exHead : conHead.exList) { if (!it.hasNext()) break; als.exPtr2 = it.next(); ALS.ALSExport xRefHead = findXRefEntry(cellHead, (String)exHead.nodeName); if (als.exPtr2 == null) { System.out.println("Insufficient parameters declared for model '" + conHead.modelName + "' in netlist"); return true; } for(ALS.ALSExport xRefPtr1 : cellPtr2.exList) { if (xRefPtr1.nodeName.equals(als.exPtr2.nodeName)) { System.out.println("Node '" + als.exPtr2.nodeName + "' in model '" + conHead.modelName + "' connected more than once"); return true; } } ALS.ALSExport xRefPtr2 = new ALS.ALSExport(); xRefPtr2.nodeName = als.exPtr2.nodeName; xRefPtr2.nodePtr = xRefHead.nodePtr; cellPtr2.exList.add(xRefPtr2); } conHead = conHead.next; } return false; } /** * Method to return a pointer to the model referenced by the * calling argument character string. Returns zero on error. * * Calling Arguments: * modelName = pointer to a string which contains the name of the model * to be located by the search procedure */ private ALS.Model findModel(String modelName) { // convert to proper name StringBuffer sb = new StringBuffer(); for(int i=0; i<modelName.length(); i++) { char chr = modelName.charAt(i); if (!TextUtils.isLetterOrDigit(chr)) chr = '_'; sb.append(chr); } String properName = sb.toString(); for(ALS.Model modHead : als.modelList) { if (modHead.name.equals(properName)) return modHead; } System.out.println("ERROR: Model '" + properName + "' not found, simulation aborted"); return null; } /** * Method to return the flattened database node number for the * specified model and node name. * * Calling Arguments: * cellHead = pointer to the xref table for the model being processed * name = pointer to a char string containing the node name */ private ALS.ALSExport findXRefEntry(ALS.Connect cellHead, String name) { for(ALS.ALSExport xRefPtr1 : cellHead.exList) { if (xRefPtr1.nodeName.equals(name)) return xRefPtr1; } ALS.ALSExport xRefPtr2 = new ALS.ALSExport(); xRefPtr2.nodeName = name; cellHead.exList.add(xRefPtr2); ALS.Node nodePtr2 = new ALS.Node(); nodePtr2.cellPtr = cellHead; nodePtr2.statList = new ArrayList<Stat>(); nodePtr2.pinList = new ArrayList<ALS.Load>(); nodePtr2.load = -1; nodePtr2.visit = 0; nodePtr2.traceNode = false; als.nodeList.add(nodePtr2); xRefPtr2.nodePtr = nodePtr2; return xRefPtr2; } /** * Method to step through the gate truth tables and examines all * node references to insure that they have been included in the cross * reference table for the model. Returns true on error. * * Calling Arguments: * cellHead = pointer to the cross reference data structure for the model * that is going to be flattened * modHead = pointer to the dtat structure containing the hierarchical * node references */ private void processGate(ALS.Connect cellHead, ALS.Model modHead) { primPtr2 = new ALS.Model(modHead.name, 'G'); primPtr2.fanOut = modHead.fanOut; primPtr2.priority = modHead.priority; primPtr2.level = als.computePathName(cellHead); als.primList.add(primPtr2); ALS.Row rowHead = (ALS.Row)modHead.ptr; ALS.Row last = null; while (rowHead != null) { ALS.Row rowPtr2 = new ALS.Row(); rowPtr2.inList = new ArrayList<Object>(); rowPtr2.outList = new ArrayList<Object>(); rowPtr2.delta = rowHead.delta; rowPtr2.linear = rowHead.linear; rowPtr2.exp = rowHead.exp; rowPtr2.abs = rowHead.abs; rowPtr2.random = rowHead.random; rowPtr2.delay = rowHead.delay; if (rowHead.delay == null) rowPtr2.delay = null; else rowPtr2.delay = rowHead.delay; rowPtr2.next = null; if (last == null) { primPtr2.ptr = rowPtr2; } else { last.next = rowPtr2; } last = rowPtr2; als.ioPtr1 = rowPtr2.inList; processIOEntry(modHead, cellHead, rowHead.inList, 'I'); als.ioPtr1 = rowPtr2.outList; processIOEntry(modHead, cellHead, rowHead.outList, 'O'); rowHead = rowHead.next; } } /** * Method to step through the node references contained within a * row of a transition table and insures that they are included in the cross * reference table in the event they were not previously specified in a * connection statement. Returns true on error. * * Calling Arguments: * modHead = pointer to model that is being flattened * cellHead = pointer to the cross reference data structure for the model * that is going to be flattened * ioHead = pointer to a row of node references to be checked for * entry into the cross reference table * flag = character indicating if the node is an input or output */ private void processIOEntry(ALS.Model modHead, ALS.Connect cellHead, List<Object> ioList, char flag) { for(Object obj : ioList) { ALS.IO ioHead = (ALS.IO)obj; ALS.ALSExport xRefHead = findXRefEntry(cellHead, (String)ioHead.nodePtr); als.ioPtr2 = new ALS.IO(); als.ioPtr2.nodePtr = xRefHead.nodePtr; als.ioPtr2.operatr = ioHead.operatr; if (als.ioPtr2.operatr > 127) { xRefHead = findXRefEntry(cellHead, (String)ioHead.operand); als.ioPtr2.operand = xRefHead.nodePtr; } else { als.ioPtr2.operand = ioHead.operand; } als.ioPtr2.strength = ioHead.strength; als.ioPtr1.add(als.ioPtr2); switch (flag) { case 'I': createPinEntry(modHead, (String)ioHead.nodePtr, (ALS.Node)als.ioPtr2.nodePtr); break; case 'O': als.ioPtr2.nodePtr = createStatEntry(modHead, (String)ioHead.nodePtr, (ALS.Node)als.ioPtr2.nodePtr); } if (als.ioPtr2.operatr > 127) { createPinEntry(modHead, (String)ioHead.operand, (ALS.Node)als.ioPtr2.operand); } } } /** * Method to make an entry into the primitive input table for the * specified node. This table keeps track of the primitives which use * this node as an input for event driven simulation. Returns true on error. * * Calling Arguments: * modHead = pointer to the model structure from which the primitive * is being created * nodeName = pointer to a char string containing the name of the node * whose input list is being updated * nodeHead = pointer to the node data structure allocated for this node */ private void createPinEntry(ALS.Model modHead, String nodeName, ALS.Node nodeHead) { for(ALS.Load pinPtr1 : nodeHead.pinList) { if (pinPtr1.ptr == primPtr2) return; } ALS.Load pinPtr2 = new ALS.Load(); pinPtr2.ptr = primPtr2; nodeHead.pinList.add(pinPtr2); nodeHead.load += findLoadValue(modHead, nodeName); } /** * Method to make an entry into the database for an output which * is connected to the specified node. Statistics are maintained for each output * that is connected to a node. Returns zero on error. * * Calling Arguments: * modHead = pointer to the model structure from which the primitive * is being created * nodeName = pointer to a char string containing the name of the node * whose output list is being updated * nodeHead = pointer to the node data structure allocated for this node */ private ALS.Stat createStatEntry(ALS.Model modHead, String nodeName, ALS.Node nodeHead) { for(Stat statPtr1 : nodeHead.statList) { if (statPtr1.primPtr == primPtr2) return statPtr1; } ALS.Stat statPtr2 = new ALS.Stat(); statPtr2.primPtr = primPtr2; statPtr2.nodePtr = nodeHead; nodeHead.statList.add(statPtr2); nodeHead.load += findLoadValue(modHead, nodeName); return statPtr2; } /** * Method to return the loading factor for the specified node. If * the node can't be found in the load list it is assumed it has a default value * of 1.0. * * Calling Arguments: * modHead = pointer to the model structure from which the primitive * is being created * nodeName = pointer to a char string containing the name of the node * whose load value is to be determined */ private double findLoadValue(ALS.Model modHead, String nodeName) { for(ALS.Load loadHead : modHead.loadList) { if (loadHead.ptr.equals(nodeName)) return loadHead.load; } if (modHead.type == 'F') return 0; return 1; } /** * Method to go through the set node list for the specified cell * and generates vectors for the node. These vectors are executed at t=0 by * the simulator to initialize the node correctly. Returns true on error. * * Calling Arguments: * cellHead = pointer to the cross reference table where the node locations * are to be found * ioHead = pointer to the set list containing node names and state info */ private void processSetEntry(ALS.Connect cellHead, List<ALS.IO> ioList) { for(ALS.IO ioHead : ioList) { ALS.ALSExport xRefHead = findXRefEntry(cellHead, (String)ioHead.nodePtr); ALS.Link setHead = new ALS.Link(); setHead.type = 'N'; setHead.ptr = xRefHead.nodePtr; setHead.state = ioHead.operand; setHead.strength = ioHead.strength; setHead.priority = 2; setHead.time = 0.0; setHead.right = null; als.insertSetList(setHead); } } /** * Method to step through the event driving input list for a function * and enters the function into the primitive input list for the particular node. * In addition to this task the procedure sets up the calling argument node list * for the function when it is called. Returns true on error. * * Calling Arguments: * cellHead = pointer to the cross reference data structure for the model * that is going to be flattened * modHead = pointer to the data structure containing the hierarchical * node references */ private boolean processFunction(ALS.Connect cellHead, ALS.Model modHead) { primPtr2 = new ALS.Model(modHead.name, 'F'); primPtr2.ptr = new ALS.Func(); primPtr2.priority = modHead.priority; primPtr2.level = als.computePathName(cellHead); als.primList.add(primPtr2); ALS.Func funcHead = (ALS.Func)modHead.ptr; ALS.Func funcPtr2 = (ALS.Func)primPtr2.ptr; funcPtr2.procPtr = ALS.UserProc.getFunctionAddress(modHead.name); if (funcPtr2.procPtr == null) return true; funcPtr2.inList = new ArrayList<ALS.ALSExport>(); funcPtr2.delta = funcHead.delta; funcPtr2.linear = funcHead.linear; funcPtr2.exp = funcHead.exp; funcPtr2.abs = funcHead.abs; funcPtr2.random = funcHead.random; funcPtr2.userPtr = null; for(ALS.ALSExport exHead : modHead.exList) { ALS.ALSExport xRefHead = findXRefEntry(cellHead, (String)exHead.nodeName); als.exPtr2 = new ALS.ALSExport(); if (exHead.nodePtr != null) { als.exPtr2.nodeName = createStatEntry(modHead, (String)exHead.nodeName, xRefHead.nodePtr); } else { als.exPtr2.nodeName = null; } als.exPtr2.nodePtr = xRefHead.nodePtr; primPtr2.exList.add(als.exPtr2); } for(ALS.ALSExport exHead : funcHead.inList) { ALS.ALSExport xRefHead = findXRefEntry(cellHead, (String)exHead.nodeName); als.exPtr2 = new ALS.ALSExport(); als.exPtr2.nodePtr = xRefHead.nodePtr; primPtr2.exList.add(als.exPtr2); createPinEntry(modHead, (String)exHead.nodeName, xRefHead.nodePtr); } return false; } }