/* -*- tab-width: 4 -*- * * Electric(tm) VLSI Design System * * File: Nand2_star.java * * Copyright (c) 2003 Sun Microsystems and Static Free Software * * Electric(tm) is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * Electric(tm) is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Electric(tm); see the file COPYING. If not, write to * the Free Software Foundation, Inc., 59 Temple Place, Suite 330, * Boston, Mass 02111-1307, USA. */ package com.sun.electric.tool.generator.layout.gates; import com.sun.electric.database.hierarchy.Cell; import com.sun.electric.database.prototype.PortCharacteristic; import com.sun.electric.tool.generator.layout.FoldedMos; import com.sun.electric.tool.generator.layout.FoldedNmos; import com.sun.electric.tool.generator.layout.FoldedPmos; import com.sun.electric.tool.generator.layout.FoldsAndWidth; import com.sun.electric.tool.generator.layout.LayoutLib; import com.sun.electric.tool.generator.layout.StdCellParams; import com.sun.electric.tool.generator.layout.TechType; import com.sun.electric.tool.generator.layout.TrackRouter; import com.sun.electric.tool.generator.layout.TrackRouterH; import com.sun.electric.tool.Job; class Nand2_star { private static final double nmosTop = -9.0; private static final double pmosBot = 9.0; private static final double wellOverhangDiff = 6; private static final double inbY = 4.0; private static final double inaY = -4.0; private static final double outHiY = 11.0; private static final double outLoY = -11.0; private static void error(boolean pred, String msg) { Job.error(pred, msg); } static Cell makePart(double sz, String threshold, StdCellParams stdCell) { TechType tech = stdCell.getTechType(); sz = stdCell.roundSize(sz); error(!threshold.equals("") && !threshold.equals("HLT"), "Nand2: threshold not \"\" or \"HLT\": "+threshold); String nm = "nand2" + threshold; double minSz = 3./(threshold.equals("HLT") ? (6 * .75) : 6); sz = stdCell.checkMinStrength(sz, minSz, nm); // Compute number of folds and width for PMOS double spaceAvail = stdCell.getCellTop() - wellOverhangDiff - pmosBot; double lamPerSz = threshold.equals("HLT") ? (6 * .75) : 6; double totWid = sz * lamPerSz * 2; // 2 independent pullups FoldsAndWidth fwP = stdCell.calcFoldsAndWidth(spaceAvail, totWid, 2); error(fwP==null, "can't make "+nm+" this small: "+sz); // Compute number of folds and width for NMOS int nbStackedN = 2; spaceAvail = nmosTop - (stdCell.getCellBot() + wellOverhangDiff); totWid = sz * 3 * nbStackedN; FoldsAndWidth fwN = stdCell.calcFoldsAndWidth(spaceAvail, totWid, 1); error(fwN==null, "can't make "+nm+" this small: "+sz); // create NAND Part Cell nand = stdCell.findPart(nm, sz); if (nand!=null) return nand; nand = stdCell.newPart(nm, sz); // leave vertical m1 track for inA double inaX = 1.5 + 2; // m1_m1_sp/2 + m1_wid/2 double pmosX = inaX + 2 + 3 + 2;// m1_wid/2 + m1_m1_sp + diffCont_wid/2 // PMOS double pmosY = pmosBot + fwP.physWid/2; FoldedMos pmos = new FoldedPmos(pmosX, pmosY, fwP.nbFolds, 1, fwP.gateWid, nand, tech); // NMOS double nmosY = nmosTop - fwN.physWid/2; // Create multiple NMOS FoldedMos. Each NMOS FoldedMos is a 2 // high stack. Each NMOS FoldedMos has 2 folds except when sz is // too small to allow folding. FoldedMos[] nmoss = new FoldedMos[(int) Math.ceil(fwN.nbFolds/2.0)]; for (int nbFoldsN=0; nbFoldsN<fwN.nbFolds; nbFoldsN+=2) { int nbStacked = 2; int nbFolds = Math.min(2, fwN.nbFolds); // magic constant: 3 lambda lines up gates 1, 2 of NMOS and PMOS double nmosPitch = 32; double nmosX = LayoutLib.roundCenterX(pmos.getSrcDrn(0)) + 3 + (nbFoldsN/2)*nmosPitch; FoldedMos nmos = new FoldedNmos(nmosX, nmosY, nbFolds, nbStacked, fwN.gateWid, nand, tech); nmoss[nbFoldsN/2] = nmos; } stdCell.fillDiffAndSelectNotches(nmoss, true); // create vdd and gnd exports and connect to MOS source/drains stdCell.wireVddGnd(nmoss, StdCellParams.EVEN, nand); stdCell.wireVddGnd(pmos, StdCellParams.EVEN, nand); // Nand input A LayoutLib.newExport(nand, "ina", PortCharacteristic.IN, tech.m1(), 4, inaX, inaY); TrackRouter inA = new TrackRouterH(tech.m1(), 3, inaY, tech, nand); inA.connect(nand.findExport("ina")); for (int i=0; i<nmoss.length; i++) { for (int j=0; j<nmoss[i].nbGates(); j+=2) { if (j/2 % 2 == 0) { inA.connect(nmoss[i].getGate(j, 'T'), -1.5); } else { inA.connect(nmoss[i].getGate(j+1, 'T'), 1.5); } } } for (int i=0; i<pmos.nbGates(); i+=2) { if (i/2 % 2 == 0) { inA.connect(pmos.getGate(i, 'B'), 1.5); } else { inA.connect(pmos.getGate(i+1, 'B'), -1.5); } } // Nand input B // m1_wid + m1_space + m1_wid/2 double inbX = StdCellParams.getRightDiffX(pmos, nmoss) + 2 + 3 + 2; LayoutLib.newExport(nand, "inb", PortCharacteristic.IN, tech.m1(), 4, inbX, inbY); TrackRouter inb = new TrackRouterH(tech.m1(), 3, inbY, tech, nand); inb.connect(nand.findExport("inb")); for (int i=0; i<nmoss.length; i++) { for (int j=0; j<nmoss[i].nbGates(); j+=2) { if (j/2 % 2 == 0) { inb.connect(nmoss[i].getGate(j+1, 'T')); } else { inb.connect(nmoss[i].getGate(j, 'T')); } } } for (int i=0; i<pmos.nbGates(); i+=2) { if (i/2 % 2 == 0){ inb.connect(pmos.getGate(i+1, 'B')); } else { inb.connect(pmos.getGate(i, 'B')); } } // Nand output double outX = inbX + 2 + 3 + 2; // m1_wid/2 + m1_sp + m1_wid/2 LayoutLib.newExport(nand, "out", PortCharacteristic.OUT, tech.m1(), 4, outX, outHiY); TrackRouter outHi = new TrackRouterH(tech.m2(), 4, outHiY, tech, nand); outHi.connect(nand.findExport("out")); for (int i=1; i<pmos.nbSrcDrns(); i+=2) { outHi.connect(pmos.getSrcDrn(i)); } TrackRouter outLo = new TrackRouterH(tech.m2(), 4, outLoY, tech, nand); outLo.connect(nand.findExport("out")); for (int i=0; i<nmoss.length; i++) { for (int j=1; j<nmoss[i].nbSrcDrns(); j+=2) { outLo.connect(nmoss[i].getSrcDrn(j)); } } // add wells double wellMinX = 0; double wellMaxX = outX + 2 + 1.5; // m1_wid/2 + m1m1_space/2 stdCell.addNmosWell(wellMinX, wellMaxX, nand); stdCell.addPmosWell(wellMinX, wellMaxX, nand); // add essential bounds stdCell.addEssentialBounds(wellMinX, wellMaxX, nand); // perform Network Consistency Check stdCell.doNCC(nand, nm+"{sch}"); return nand; } }