/* -*- tab-width: 4 -*- * * Electric(tm) VLSI Design System * * File: Inv_star_wideOutput.java * * Copyright (c) 2003 Sun Microsystems and Static Free Software * * Electric(tm) is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * Electric(tm) is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Electric(tm); see the file COPYING. If not, write to * the Free Software Foundation, Inc., 59 Temple Place, Suite 330, * Boston, Mass 02111-1307, USA. */ package com.sun.electric.tool.generator.layout.gates; import com.sun.electric.database.hierarchy.Cell; import com.sun.electric.database.prototype.PortCharacteristic; import com.sun.electric.database.topology.PortInst; import com.sun.electric.tool.generator.layout.FoldedMos; import com.sun.electric.tool.generator.layout.FoldedNmos; import com.sun.electric.tool.generator.layout.FoldedPmos; import com.sun.electric.tool.generator.layout.FoldsAndWidth; import com.sun.electric.tool.generator.layout.LayoutLib; import com.sun.electric.tool.generator.layout.StdCellParams; import com.sun.electric.tool.generator.layout.TechType; import com.sun.electric.tool.generator.layout.TrackRouter; import com.sun.electric.tool.generator.layout.TrackRouterH; import com.sun.electric.tool.Job; /** * Create inverters with wide output busses. */ /** run a wide output bus in metal-1 along n-well/p-well boundary */ /** Tricky: Normally the strong PMOS is folded and the right most * source/drain is ground. However, if the strong PMOS is so small * that it has only one fold then the right most source/drain is the * output. This creates a special case for the weak PMOS because the * weak PMOS overlaps the strong PMOS's right most source/drain. When * the strong PMOS gets very small, we have to mirror the weak PMOS * about it's gate. */ public class Inv2iKn { // private static final double outHiY = 11.0; private static final double outLoY = -11.0; private static final double outBusWidth = 10; private static final double outBusSpace = 3; private static final double outY = 0; private static final double weakRatio = 10; private static class MyGateSpace implements FoldedMos.GateSpace { double dogBoneExtra; MyGateSpace(TechType tech) { dogBoneExtra = tech.getGateToDiffContSpaceDogBone() - tech.getGateToDiffContSpace(); } public double getExtraSpace(double requiredExtraSpace, int foldNdx, int nbFolds, int spaceNdx, int nbGates){ return (foldNdx==nbFolds-1 && spaceNdx==1) ? dogBoneExtra : requiredExtraSpace; } } private static void error(boolean pred, String msg) { Job.error(pred, msg); } // If strong PMOS has only one fold then connect ODD src/drn of weak // NMOS to ground private static final StdCellParams.SelectSrcDrn flipWeakPmos = new StdCellParams.SelectSrcDrn() { public boolean connectThisOne(int mosNdx, int srcDrnNdx) { if (mosNdx==0) { return srcDrnNdx%2==1; } else if (mosNdx==1) { return srcDrnNdx%2==0; } else { error(true, "more than two FoldedMos?"); return false; } } }; public static Cell makePart(double sz, StdCellParams stdCell) { TechType tech = stdCell.getTechType(); sz = stdCell.roundSize(sz); String nm = "inv2iKn"; sz = stdCell.checkMinStrength(sz, 1, nm); double outsideSpace = 2 + 5 + 1.5; // p1_nd_sp + p1m1_wid + p1_p1_sp/2 double insideSpace = outBusWidth/2 + outBusSpace - .5; // MOS diff surrounds m1 by .5 double spaceAvail = stdCell.getCellTop() - outsideSpace - insideSpace; // find number of folds and width of PMOS double totWidP = sz * 6; FoldsAndWidth fwP = stdCell.calcFoldsAndWidth(spaceAvail, totWidP, 1); error(fwP==null, "can't make "+nm+" this small: " + sz); // Weak PMOS is 1/weakRatio the width of the strong PMOS totWidP = Math.max(3, totWidP/weakRatio); FoldsAndWidth fwW = stdCell.calcFoldsAndWidth(spaceAvail, totWidP, 1); error(fwW==null, "can't make "+nm+" this small: "+sz); // find number of folds and width of NMOS spaceAvail = -insideSpace - (stdCell.getCellBot() + outsideSpace); double totWidN = sz * 3; FoldsAndWidth fwN = stdCell.calcFoldsAndWidth(spaceAvail, totWidN, 1); error(fwN==null, "can't make "+nm+" this small: " + sz); // create Inverter Part Cell inv = stdCell.findPart(nm, sz); if (inv!=null) return inv; inv = stdCell.newPart(nm, sz); // leave vertical m1 tracks for in[p], in[n], cross-over double inNX = 1.5 + 2; // m1_m1_sp/2 + m1_wid/2 double inPX = inNX + 1.5 + 2; // m1_m1_sp/2 + m1_wid/2 double weakX = inPX + 2 + 3 + 2; // m1_wid/2 + m1_m1_sp + m1_wid/2 double nmosX = weakX + 2 + 3 + 2; // m1_wid/2 + m1_m1_sp + m1_wid/2 double nmosY = -insideSpace - fwN.physWid / 2; FoldedMos nmos = new FoldedNmos(nmosX, nmosY, fwN.nbFolds, 1, fwN.gateWid, inv, tech); // Insert extra space between the leftmost diffusion contact and the // leftmost gate. FoldedMos.GateSpace spaceLastGate = new MyGateSpace(tech); double weakY = insideSpace + fwW.physWid/2; FoldedMos pmosW = new FoldedPmos(weakX, weakY, fwW.nbFolds, 1, fwW.gateWid, spaceLastGate, 'B', inv, tech); // strong PMOS overlaps weak PMOS double pmosY = insideSpace + fwP.physWid/2; double pmosX = pmosW.getSrcDrn(fwW.nbFolds).getBounds().getCenterX(); FoldedMos pmos = new FoldedPmos(pmosX, pmosY, fwP.nbFolds, 1, fwP.gateWid, inv, tech); // inverter output: m1_wid/2 + m1_m1_sp + m1_wid/2 double outX = StdCellParams.getRightDiffX(nmos, pmos) + 2 + 3 + 2; LayoutLib.newExport(inv, "out", PortCharacteristic.OUT, tech.m1(), 4, outX, 0); // create vdd and gnd exports and connect to MOS source/drains stdCell.wireVddGnd(nmos, StdCellParams.EVEN, inv); boolean weakPmosOneFold = fwW.nbFolds==1; stdCell.wireVddGnd(new FoldedMos[] {pmosW, pmos}, weakPmosOneFold ? flipWeakPmos : StdCellParams.EVEN, inv); // Connect gates of weak MOS using poly TrackRouter weakPoly = new TrackRouterH(tech.p1(), 2, 0, tech, inv); for (int i=0; i<pmosW.nbGates(); i++) { weakPoly.connect(pmosW.getGate(i, 'B')); } // Connect an equal number of NMOS gates as weak PMOS gates for (int i=0; i<Math.min(nmos.nbGates(), pmosW.nbGates()); i++) { weakPoly.connect(nmos.getGate(i, 'T')); } // Connect gates using metal1 along bottom of cell double gndBot = stdCell.getGndY() - stdCell.getGndWidth() / 2; double inLoFromGnd = gndBot - 3 - 2; // -m1_m1_sp -m1_wid/2 double nmosBot = nmosY - fwN.physWid / 2; double inLoFromMos = nmosBot - 2 - 2.5; // -nd_p1_sp - p1m1_wid/2 double inLoY = Math.min(inLoFromGnd, inLoFromMos); LayoutLib.newExport(inv, "in[n]", PortCharacteristic.IN, tech.m1(), 4, inNX, outLoY); PortInst m1pin = LayoutLib.newNodeInst(tech.m1pin(), weakX, outLoY, 4, 4, 0, inv).getOnlyPortInst(); TrackRouter inNHi = new TrackRouterH(tech.m2(), 3, outLoY, tech, inv); inNHi.connect(inv.findExport("in[n]")); inNHi.connect(m1pin); TrackRouter inLo = new TrackRouterH(tech.m1(), 3, inLoY, tech, inv); inLo.connect(m1pin); for (int i = 0; i < nmos.nbGates(); i++) { inLo.connect(nmos.getGate(i, 'B')); } // Connect gates using metal1 along top of cell double vddTop = stdCell.getVddY() + stdCell.getVddWidth() / 2; double inHiFromVdd = vddTop + 3 + 2; // +m1_m1_sp + m1_wid/2 double pmosTop = pmosY + fwP.physWid / 2; double inHiFromMos = pmosTop + 2 + 2.5; // +pd_p1_sp + p1m1_wid/2 double inHiY = Math.max(inHiFromVdd, inHiFromMos); LayoutLib.newExport(inv, "in[p]", PortCharacteristic.IN, tech.m1(), 4, inPX, inHiY); TrackRouter inHi = new TrackRouterH(tech.m1(), 3, inHiY, tech, inv); inHi.connect(inv.findExport("in[p]")); for (int i=0; i<pmos.nbGates(); i++) { inHi.connect(pmos.getGate(i, 'T')); } // connect up output TrackRouter out = new TrackRouterH(tech.m1(), outBusWidth, outY, tech, inv); out.connect(inv.findExport("out")); for (int i=(weakPmosOneFold?0:1); i<pmosW.nbSrcDrns(); i+=2) { out.connect(pmosW.getSrcDrn(i)); } for (int i=1; i<pmos.nbSrcDrns(); i+=2) { out.connect(pmos.getSrcDrn(i)); } for (int i=1; i<nmos.nbSrcDrns(); i+=2) { out.connect(nmos.getSrcDrn(i)); } // add wells double wellMinX = 0; double wellMaxX = outX + outBusWidth/2 + 1.5; // m1_wid/2 + m1m1_space/2 stdCell.addNmosWell(wellMinX, wellMaxX, inv); stdCell.addPmosWell(wellMinX, wellMaxX, inv); // add essential bounds stdCell.addEssentialBounds(wellMinX, wellMaxX, inv); // perform Network Consistency Check stdCell.doNCC(inv, nm+"{sch}"); return inv; } }