/* -*- tab-width: 4 -*- * * Electric(tm) VLSI Design System * * File: Nand2_star_en.java * * Copyright (c) 2003 Sun Microsystems and Static Free Software * * Electric(tm) is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * Electric(tm) is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Electric(tm); see the file COPYING. If not, write to * the Free Software Foundation, Inc., 59 Temple Place, Suite 330, * Boston, Mass 02111-1307, USA. */ package com.sun.electric.tool.generator.layout.gates; import com.sun.electric.database.hierarchy.Cell; import com.sun.electric.database.prototype.PortCharacteristic; import com.sun.electric.tool.generator.layout.FoldedMos; import com.sun.electric.tool.generator.layout.FoldedNmos; import com.sun.electric.tool.generator.layout.FoldedPmos; import com.sun.electric.tool.generator.layout.FoldsAndWidth; import com.sun.electric.tool.generator.layout.LayoutLib; import com.sun.electric.tool.generator.layout.StdCellParams; import com.sun.electric.tool.generator.layout.TechType; import com.sun.electric.tool.generator.layout.TrackRouter; import com.sun.electric.tool.generator.layout.TrackRouterH; import com.sun.electric.tool.Job; public class Nand2_star_en { private static final double wellOverhangDiff = 6; private static final double outHiY = 11.0; private static final double outLoY = -11.0; private static final double wirePitch = 7; private static final double wireWithPolyPitch = 8; // p1m1_wid/2 + p1_mos_sp private static final double pmosBot = wireWithPolyPitch/2 + 5./2 + 2; private static final double nmosTop = -pmosBot; private static final double inbY = wireWithPolyPitch/2; private static final double inaY = -wireWithPolyPitch/2; private static final double pmosPitch = 26; private static void error(boolean pred, String msg) { Job.error(pred, msg); } public static Cell makePart(double sz, String threshold, StdCellParams stdCell) { TechType tech = stdCell.getTechType(); error(!threshold.equals("") && !threshold.equals("LT") && !threshold.equals("HT"), "Nand2_star_en: threshold not \"\", \"LT\", or \"HT\": " + threshold); String nm = "nand2"+threshold+"en"; sz = stdCell.roundSize(sz); sz = stdCell.checkMinStrength(sz, threshold.equals("LT") ? 1 : .5, nm); // Compute number of folds and width for NMOS int nbSeriesN = 2; double spaceAvail = nmosTop - (stdCell.getCellBot() + wellOverhangDiff); double totWid = sz * nbSeriesN * 3; FoldsAndWidth fwN = stdCell.calcFoldsAndWidth(spaceAvail, totWid, 1); error(fwN==null, "can't make "+nm+" this small: "+sz); // Compute number of folds and width for PMOS. spaceAvail = stdCell.getCellTop() - wellOverhangDiff - pmosBot; totWid = sz * 6; if (threshold.equals("HT")) totWid = totWid * 2; else if (threshold.equals("LT")) totWid = totWid / 2; FoldsAndWidth fwP = stdCell.calcFoldsAndWidth(spaceAvail, totWid, 1); error(fwP==null, "can't make "+nm+" this small: "+sz); // Compute number of folds and width for weak PMOS totWid = Math.max(totWid / 10, 5); FoldsAndWidth fwW = stdCell.calcFoldsAndWidth(spaceAvail, totWid, 1); error(fwW==null, "can't make "+nm+" this small: "+sz); // create Nand Part Cell nand = stdCell.findPart(nm, sz); if (nand!=null) return nand; nand = stdCell.newPart(nm, sz); // leave vertical m1 track for inb double inbX = wirePitch/2; // NMOS width dominates width of nand. Allocate it in one FoldedNmos double nmosX = inbX + wirePitch; double nmosY = nmosTop - fwN.physWid/2; FoldedMos nmos = new FoldedNmos(nmosX, nmosY, fwN.nbFolds, nbSeriesN, fwN.gateWid, nand, tech); // Build regular strength PMOS. Allocate two folds per // FoldedPmos. Align PMOS gate 0 with NMOS gate 1. double pmosX = nmosX + 5; double pmosY = pmosBot + fwP.physWid/2; FoldedMos[] pmoss = new FoldedMos[(fwP.nbFolds+1)/2]; for (int nbFoldsP=0; nbFoldsP<fwP.nbFolds; nbFoldsP+=2) { double x = pmosX + (nbFoldsP/2)*pmosPitch; int nbFolds = Math.min(2, fwP.nbFolds - nbFoldsP); FoldedMos pmos = new FoldedPmos(x, pmosY, nbFolds, 1, fwP.gateWid, nand, tech); pmoss[nbFoldsP/2] = pmos; } stdCell.fillDiffAndSelectNotches(pmoss, true); // Build weak PMOS. Allocate two folds per FoldedPmos. Align PMOS // gate 0 with NMOS gate k such that (k mod 4 == 3). double rightPdiffX = StdCellParams.getRightDiffX(pmoss); double rightNdiffX = StdCellParams.getRightDiffX(nmos); double weakX = Math.max(rightPdiffX+11, rightNdiffX+2.5); double weakY = pmosBot + fwW.physWid/2; FoldedMos weak = new FoldedPmos(weakX, weakY, fwW.nbFolds, 1, fwW.gateWid, nand, tech); // create vdd and gnd exports and connect to MOS source/drains stdCell.wireVddGnd(nmos, StdCellParams.EVEN, nand); FoldedMos[] allPmoss = new FoldedMos[pmoss.length+1]; for (int i=0; i<pmoss.length; i++) allPmoss[i] = pmoss[i]; allPmoss[pmoss.length] = weak; stdCell.wireVddGnd(allPmoss, StdCellParams.EVEN, nand); // Only for TSMC180 for now ? // Fill select notch between last pmos and weak transistor FoldedMos[] tmp = {pmoss[pmoss.length-1], weak}; stdCell.fillDiffAndSelectNotches(tmp, false); // Nand input: inb // m1_wid + m1_space + m1_wid/2 LayoutLib.newExport(nand, "inb", PortCharacteristic.IN, tech.m1(), 4, inbX, inbY); TrackRouter inb = new TrackRouterH(tech.m1(), 3, inbY, tech, nand); inb.connect(nand.findExport("inb")); for (int i=0; i<pmoss.length; i++) { FoldedMos pmos = pmoss[i]; inb.connect(pmos.getGate(0, 'B'), 4, tech.getPolyLShapeOffset()); if (pmos.nbGates()==2) { inb.connect(pmos.getGate(1, 'B'), -4, tech.getPolyLShapeOffset()); } } for (int i=0; i<nmos.nbGates(); i+=2) { if (i/2 %2 == 0) { inb.connect(nmos.getGate(i+1, 'T'), 4, -tech.getPolyTShapeOffset()); } else { inb.connect(nmos.getGate(i, 'T'), -4, -tech.getPolyTShapeOffset()); } } // Nand input: ina double rightDiffX = StdCellParams.getRightDiffX(weak, weak); double inaX = rightDiffX + wirePitch; LayoutLib.newExport(nand, "ina", PortCharacteristic.IN, tech.m1(), 4, inaX, inaY); TrackRouter ina = new TrackRouterH(tech.m1(), 3, inaY, tech, nand); ina.connect(nand.findExport("ina")); for (int i=0; i<weak.nbGates(); i++) { ina.connect(weak.getGate(i, 'B'), 1.5, tech.getPolyLShapeOffset()); } for (int i=0; i<nmos.nbGates(); i+=2) { if (i/2 % 2 == 0) { ina.connect(nmos.getGate(i, 'T'), -4, -tech.getPolyLShapeOffset()); } else { ina.connect(nmos.getGate(i+1, 'T'), 4, -tech.getPolyLShapeOffset()); } } // Nand output: out double outX = inaX + wirePitch; LayoutLib.newExport(nand, "out", PortCharacteristic.OUT, tech.m1(), 4, outX, outHiY); TrackRouter outHi = new TrackRouterH(tech.m2(), 4, outHiY, tech, nand); outHi.connect(nand.findExport("out")); for (int i=0; i<pmoss.length; i++) { outHi.connect(pmoss[i].getSrcDrn(1)); } for (int i=1; i<weak.nbSrcDrns(); i+=2) { outHi.connect(weak.getSrcDrn(i)); } TrackRouter outLo = new TrackRouterH(tech.m2(), 4, outLoY, tech, nand); outLo.connect(nand.findExport("out")); for (int i=1; i<nmos.nbSrcDrns(); i+=2) { outLo.connect(nmos.getSrcDrn(i)); } // Due to weak transistors on the right // ============================ // StdCellParams.fillSelect(nand, true, false, false); // ============================ // add wells double wellMinX = 0; double wellMaxX = outX + 2 + 1.5; // m1_wid/2 + m1m1_space/2 stdCell.addNmosWell(wellMinX, wellMaxX, nand); stdCell.addPmosWell(wellMinX, wellMaxX, nand); // add essential bounds stdCell.addEssentialBounds(wellMinX, wellMaxX, nand); // perform Network Consistency Check stdCell.doNCC(nand, nm+"{sch}"); return nand; } }