/* -*- tab-width: 4 -*- * * Electric(tm) VLSI Design System * * File: NewSignal.java * * Copyright (c) 2009 Sun Microsystems and Static Free Software * * Electric(tm) is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * Electric(tm) is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Electric(tm); see the file COPYING. If not, write to * the Free Software Foundation, Inc., 59 Temple Place, Suite 330, * Boston, Mass 02111-1307, USA. */ package com.sun.electric.tool.simulation; /** * A crude implementation of NewSignal which implements * getApproximation() for the case where tn=vd=0 by binary search. */ public abstract class NewSignalSimpleImpl implements NewSignal<ScalarSample> { private NewSignal.Approximation<ScalarSample> pa = null; private double tmin; private double tmax; private int emax; // This binary search is done carefully so that it takes the // same search path as far as possible even for different // t0/t1 inputs. That is, for example, why we don't use e0 to // help start the search for e1. This ensures that any // caching done by the subclass is exploited as fully as // possible. protected int getEventForTime(double t, boolean justLessThan) { if (pa==null) { this.pa = getPreferredApproximation(); this.emax = pa.getNumEvents()-1; this.tmin = pa.getTime(0); this.tmax = pa.getTime(this.emax); } numLookups++; int emin = 0; int emax = this.emax; double tmin = this.tmin; double tmax = this.tmax; boolean last = true; while(true) { if (emin==emax) return emin; if (emin+1 == emax) return justLessThan ? emin : emax; double est = ((t-tmin)*(emax-emin))/(tmax-tmin); //int e = (emin+emax)/2; int e = emin + (last ? ((int)Math.ceil(est)) : ((int)Math.floor(est))); last = !last; if (e<=emin) return emin; if (e>=emax) return emax; double te = pa.getTime(e); steps++; if (te < t) { emin = e; tmin = te; } else if (te > t) { emax = e; tmax = te; } else return e; } } public static int misses = 0; public static int steps = 0; public static int numLookups = 0; public NewSignal.Approximation<ScalarSample> getPixelatedApproximation(double t0, double t1, int numRegions) { // FIXME: bad return getApproximation(t0, t1, numRegions, new ScalarSample(0), new ScalarSample(0), 0); } public NewSignal.Approximation<ScalarSample> getApproximation(double t0, double t1, int numEvents, ScalarSample v0, ScalarSample v1, int vd) { if (vd!=0) throw new RuntimeException("not implemented"); // FIXME: currently ignoring v0/v1 int e0 = getEventForTime(t0, true); int e1 = getEventForTime(t1, false); //System.err.println("t0="+t0+", e0="+e0+", getPreferredApproximation().getTime(e0)="+getPreferredApproximation().getTime(e0)); //System.err.println("t1="+t1+", e1="+e1+", getPreferredApproximation().getTime(e1)="+getPreferredApproximation().getTime(e1)); if (numEvents==0) throw new RuntimeException("invalid!"); return new ApproximationSimpleImpl(e0, e1, numEvents, t0, t1); } protected ScalarSample getSampleForTime(double t, boolean justLessThan) { int e = getEventForTime(t, justLessThan); return getPreferredApproximation().getSample(e); } private class ApproximationSimpleImpl implements NewSignal.Approximation<ScalarSample> { private final int minEvent; private final int maxEvent; private final int numEvents; private final double t0; private final double t1; public ApproximationSimpleImpl(int minEvent, int maxEvent, int numEvents, double t0, double t1) { this.minEvent=minEvent; this.maxEvent=maxEvent; this.t0 = t0; this.t1 = t1; this.numEvents = numEvents; //System.err.println("minEvent="+minEvent+", maxEvent="+maxEvent+", ne="+numEvents + " t0="+t0+ " t1="+t1); } public int getNumEvents() { return numEvents; } public double getTime(int event) { return t0 + (event*(t1-t0))/(numEvents-1); } public ScalarSample getSample(int event) { return getSampleForTime(getTime(event), /* FIXME: should interpolate */ true); } public int getTimeDenominator() { throw new RuntimeException("not implemented"); } public int getEventWithMinValue() { throw new RuntimeException("not implemented"); } public int getEventWithMaxValue() { throw new RuntimeException("not implemented"); } public int getTimeNumerator(int event) { throw new RuntimeException("not implemented"); } } }