/* * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.jctools_voltpatches.queues; import static org.jctools_voltpatches.util.UnsafeAccess.UNSAFE; import static org.jctools_voltpatches.util.UnsafeRefArrayAccess.lvElement; import static org.jctools_voltpatches.util.UnsafeRefArrayAccess.soElement; import static org.jctools_voltpatches.util.UnsafeRefArrayAccess.spElement; abstract class MpscArrayQueueL1Pad<E> extends ConcurrentCircularArrayQueue<E> { long p00, p01, p02, p03, p04, p05, p06, p07; long p10, p11, p12, p13, p14, p15, p16; public MpscArrayQueueL1Pad(int capacity) { super(capacity); } } abstract class MpscArrayQueueTailField<E> extends MpscArrayQueueL1Pad<E> { private final static long P_INDEX_OFFSET; static { try { P_INDEX_OFFSET = UNSAFE .objectFieldOffset(MpscArrayQueueTailField.class.getDeclaredField("producerIndex")); } catch (NoSuchFieldException e) { throw new RuntimeException(e); } } private volatile long producerIndex; public MpscArrayQueueTailField(int capacity) { super(capacity); } protected final long lvProducerIndex() { return producerIndex; } protected final boolean casProducerIndex(long expect, long newValue) { return UNSAFE.compareAndSwapLong(this, P_INDEX_OFFSET, expect, newValue); } } abstract class MpscArrayQueueMidPad<E> extends MpscArrayQueueTailField<E> { long p01, p02, p03, p04, p05, p06, p07; long p10, p11, p12, p13, p14, p15, p16, p17; public MpscArrayQueueMidPad(int capacity) { super(capacity); } } abstract class MpscArrayQueueHeadLimitField<E> extends MpscArrayQueueMidPad<E> { private final static long P_LIMIT_OFFSET; static { try { P_LIMIT_OFFSET = UNSAFE .objectFieldOffset(MpscArrayQueueHeadLimitField.class.getDeclaredField("producerLimit")); } catch (NoSuchFieldException e) { throw new RuntimeException(e); } } // First unavailable index the producer may claim up to before rereading the consumer index private volatile long producerLimit; public MpscArrayQueueHeadLimitField(int capacity) { super(capacity); this.producerLimit = capacity; } protected final long lvProducerLimit() { return producerLimit; } protected final void soProducerLimit(long v) { UNSAFE.putOrderedLong(this, P_LIMIT_OFFSET, v); } } abstract class MpscArrayQueueL2Pad<E> extends MpscArrayQueueHeadLimitField<E> { long p00, p01, p02, p03, p04, p05, p06, p07; long p10, p11, p12, p13, p14, p15, p16; public MpscArrayQueueL2Pad(int capacity) { super(capacity); } } abstract class MpscArrayQueueConsumerField<E> extends MpscArrayQueueL2Pad<E> { private final static long C_INDEX_OFFSET; static { try { C_INDEX_OFFSET = UNSAFE .objectFieldOffset(MpscArrayQueueConsumerField.class.getDeclaredField("consumerIndex")); } catch (NoSuchFieldException e) { throw new RuntimeException(e); } } protected long consumerIndex; public MpscArrayQueueConsumerField(int capacity) { super(capacity); } protected final long lpConsumerIndex() { return consumerIndex; } protected final long lvConsumerIndex() { return UNSAFE.getLongVolatile(this, C_INDEX_OFFSET); } protected void soConsumerIndex(long l) { UNSAFE.putOrderedLong(this, C_INDEX_OFFSET, l); } } /** * A Multi-Producer-Single-Consumer queue based on a {@link ConcurrentCircularArrayQueue}. This implies that * any thread may call the offer method, but only a single thread may call poll/peek for correctness to * maintained. <br> * This implementation follows patterns documented on the package level for False Sharing protection.<br> * This implementation is using the <a href="http://sourceforge.net/projects/mc-fastflow/">Fast Flow</a> * method for polling from the queue (with minor change to correctly publish the index) and an extension of * the Leslie Lamport concurrent queue algorithm (originated by Martin Thompson) on the producer side.<br> * * @author nitsanw * * @param <E> */ public class MpscArrayQueue<E> extends MpscArrayQueueConsumerField<E>implements QueueProgressIndicators { long p01, p02, p03, p04, p05, p06, p07; long p10, p11, p12, p13, p14, p15, p16, p17; public MpscArrayQueue(final int capacity) { super(capacity); } /** * {@link MpscArrayQueue#offer(E)}} if {@link MpscArrayQueue#size()} is less than threshold. * * @param e the object to offer onto the queue, not null * @param threshold the maximum allowable size * @return true if the offer is successful, false if queue size exceeds threshold * @since 1.0.1 */ public boolean offerIfBelowThreshold(final E e, int threshold) { if (null == e) { throw new NullPointerException(); } final long mask = this.mask; final long capacity = mask + 1; long producerLimit = lvProducerLimit(); // LoadLoad long pIndex; do { pIndex = lvProducerIndex(); // LoadLoad long available = producerLimit - pIndex; long size = capacity - available; if (size >= threshold) { final long cIndex = lvConsumerIndex(); // LoadLoad size = pIndex - cIndex; if (size >= threshold) { return false; // the size exceeds threshold } else { // update producer limit to the next index that we must recheck the consumer index producerLimit = cIndex + capacity; // this is racy, but the race is benign soProducerLimit(producerLimit); } } } while (!casProducerIndex(pIndex, pIndex + 1)); /* * NOTE: the new producer index value is made visible BEFORE the element in the array. If we relied on * the index visibility to poll() we would need to handle the case where the element is not visible. */ // Won CAS, move on to storing final long offset = calcElementOffset(pIndex, mask); soElement(buffer, offset, e); // StoreStore return true; // AWESOME :) } /** * {@inheritDoc} <br> * * IMPLEMENTATION NOTES:<br> * Lock free offer using a single CAS. As class name suggests access is permitted to many threads * concurrently. * * @see java.util.Queue#offer(java.lang.Object) * @see MessagePassingQueue#offer(Object) */ @Override public boolean offer(final E e) { if (null == e) { throw new NullPointerException(); } // use a cached view on consumer index (potentially updated in loop) final long mask = this.mask; long producerLimit = lvProducerLimit(); // LoadLoad long pIndex; do { pIndex = lvProducerIndex(); // LoadLoad if (pIndex >= producerLimit) { final long cIndex = lvConsumerIndex(); // LoadLoad producerLimit = cIndex + mask + 1; if (pIndex >= producerLimit) { return false; // FULL :( } else { // update producer limit to the next index that we must recheck the consumer index // this is racy, but the race is benign soProducerLimit(producerLimit); } } } while (!casProducerIndex(pIndex, pIndex + 1)); /* * NOTE: the new producer index value is made visible BEFORE the element in the array. If we relied on * the index visibility to poll() we would need to handle the case where the element is not visible. */ // Won CAS, move on to storing final long offset = calcElementOffset(pIndex, mask); soElement(buffer, offset, e); // StoreStore return true; // AWESOME :) } /** * A wait free alternative to offer which fails on CAS failure. * * @param e new element, not null * @return 1 if next element cannot be filled, -1 if CAS failed, 0 if successful */ public final int failFastOffer(final E e) { if (null == e) { throw new NullPointerException(); } final long mask = this.mask; final long capacity = mask + 1; final long pIndex = lvProducerIndex(); // LoadLoad long producerLimit = lvProducerLimit(); // LoadLoad if (pIndex >= producerLimit) { final long cIndex = lvConsumerIndex(); // LoadLoad producerLimit = cIndex + capacity; if (pIndex >= producerLimit) { return 1; // FULL :( } else { // update producer limit to the next index that we must recheck the consumer index soProducerLimit(producerLimit); // StoreLoad } } // look Ma, no loop! if (!casProducerIndex(pIndex, pIndex + 1)) { return -1; // CAS FAIL :( } // Won CAS, move on to storing final long offset = calcElementOffset(pIndex, mask); soElement(buffer, offset, e); return 0; // AWESOME :) } /** * {@inheritDoc} * <p> * IMPLEMENTATION NOTES:<br> * Lock free poll using ordered loads/stores. As class name suggests access is limited to a single thread. * * @see java.util.Queue#poll() * @see MessagePassingQueue#poll() */ @Override public E poll() { final long cIndex = lpConsumerIndex(); final long offset = calcElementOffset(cIndex); // Copy field to avoid re-reading after volatile load final E[] buffer = this.buffer; // If we can't see the next available element we can't poll E e = lvElement(buffer, offset); // LoadLoad if (null == e) { /* * NOTE: Queue may not actually be empty in the case of a producer (P1) being interrupted after * winning the CAS on offer but before storing the element in the queue. Other producers may go on * to fill up the queue after this element. */ if (cIndex != lvProducerIndex()) { do { e = lvElement(buffer, offset); } while (e == null); } else { return null; } } spElement(buffer, offset, null); soConsumerIndex(cIndex + 1); // StoreStore return e; } /** * {@inheritDoc} * <p> * IMPLEMENTATION NOTES:<br> * Lock free peek using ordered loads. As class name suggests access is limited to a single thread. * * @see java.util.Queue#poll() * @see MessagePassingQueue#poll() */ @Override public E peek() { // Copy field to avoid re-reading after volatile load final E[] buffer = this.buffer; final long cIndex = lpConsumerIndex(); // LoadLoad final long offset = calcElementOffset(cIndex); E e = lvElement(buffer, offset); if (null == e) { /* * NOTE: Queue may not actually be empty in the case of a producer (P1) being interrupted after * winning the CAS on offer but before storing the element in the queue. Other producers may go on * to fill up the queue after this element. */ if (cIndex != lvProducerIndex()) { do { e = lvElement(buffer, offset); } while (e == null); } else { return null; } } return e; } /** * {@inheritDoc} * <p> * */ @Override public int size() { /* * It is possible for a thread to be interrupted or reschedule between the read of the producer and * consumer indices, therefore protection is required to ensure size is within valid range. In the * event of concurrent polls/offers to this method the size is OVER estimated as we read consumer * index BEFORE the producer index. */ long afterCIndex = lvConsumerIndex(); while (true) { final long beforeCIndex = afterCIndex; final long currentProducerIndex = lvProducerIndex(); afterCIndex = lvConsumerIndex(); if (beforeCIndex == afterCIndex) { return (int) (currentProducerIndex - afterCIndex); } } } @Override public boolean isEmpty() { // Order matters! // Loading consumer before producer allows for producer increments after consumer index is read. // This ensures the correctness of this method at least for the consumer thread. Other threads POV is // not really // something we can fix here. return (lvConsumerIndex() == lvProducerIndex()); } @Override public long currentProducerIndex() { return lvProducerIndex(); } @Override public long currentConsumerIndex() { return lvConsumerIndex(); } @Override public boolean relaxedOffer(E e) { return offer(e); } @Override public E relaxedPoll() { final E[] buffer = this.buffer; final long cIndex = lpConsumerIndex(); final long offset = calcElementOffset(cIndex); // If we can't see the next available element we can't poll E e = lvElement(buffer, offset); // LoadLoad if (null == e) { return null; } spElement(buffer, offset, null); soConsumerIndex(cIndex + 1); // StoreStore return e; } @Override public E relaxedPeek() { final E[] buffer = this.buffer; final long mask = this.mask; final long cIndex = lpConsumerIndex(); return lvElement(buffer, calcElementOffset(cIndex, mask)); } @Override public int drain(Consumer<E> c) { return drain(c, capacity()); } @Override public int fill(Supplier<E> s) { long result = 0;// result is a long because we want to have a safepoint check at regular intervals final int capacity = capacity(); do { final int filled = fill(s, MpmcArrayQueue.RECOMENDED_OFFER_BATCH); if (filled == 0) { return (int) result; } result += filled; } while (result <= capacity); return (int) result; } @Override public int drain(final Consumer<E> c, final int limit) { final E[] buffer = this.buffer; final long mask = this.mask; final long cIndex = lpConsumerIndex(); for (int i = 0; i < limit; i++) { final long index = cIndex + i; final long offset = calcElementOffset(index, mask); final E e = lvElement(buffer, offset);// LoadLoad if (null == e) { return i; } soElement(buffer, offset, null);// StoreStore soConsumerIndex(index + 1); // ordered store -> atomic and ordered for size() c.accept(e); } return limit; } @Override public int fill(Supplier<E> s, int limit) { final long mask = this.mask; final long capacity = mask + 1; long producerLimit = lvProducerLimit(); // LoadLoad long pIndex; int actualLimit = 0; do { pIndex = lvProducerIndex(); // LoadLoad long available = producerLimit - pIndex; if (available <= 0) { final long cIndex = lvConsumerIndex(); // LoadLoad producerLimit = cIndex + capacity; available = producerLimit - pIndex; if (available <= 0) { return 0; // FULL :( } else { // update producer limit to the next index that we must recheck the consumer index soProducerLimit(producerLimit); // StoreLoad } } actualLimit = Math.min((int) available, limit); } while (!casProducerIndex(pIndex, pIndex + actualLimit)); // right, now we claimed a few slots and can fill them with goodness final E[] buffer = this.buffer; for (int i = 0; i < actualLimit; i++) { // Won CAS, move on to storing final long offset = calcElementOffset(pIndex + i, mask); soElement(buffer, offset, s.get()); } return actualLimit; } @Override public void drain(Consumer<E> c, WaitStrategy w, ExitCondition exit) { final E[] buffer = this.buffer; final long mask = this.mask; long cIndex = lpConsumerIndex(); int counter = 0; while (exit.keepRunning()) { for (int i = 0; i < 4096; i++) { final long offset = calcElementOffset(cIndex, mask); final E e = lvElement(buffer, offset);// LoadLoad if (null == e) { counter = w.idle(counter); continue; } cIndex++; counter = 0; soElement(buffer, offset, null);// StoreStore soConsumerIndex(cIndex); // ordered store -> atomic and ordered for size() c.accept(e); } } } @Override public void fill(Supplier<E> s, WaitStrategy w, ExitCondition exit) { int idleCounter = 0; while (exit.keepRunning()) { if (fill(s, MpmcArrayQueue.RECOMENDED_OFFER_BATCH) == 0) { idleCounter = w.idle(idleCounter); continue; } idleCounter = 0; } } }