/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.cassandra_voltpatches; import java.nio.ByteBuffer; import java.nio.ByteOrder; import com.google_voltpatches.common.primitives.UnsignedBytes; /** * This is a very fast, non-cryptographic hash suitable for general hash-based * lookup. See http://murmurhash.googlepages.com/ for more details. * * hash3_x64_128() is MurmurHash 3.0. * * <p> * The C version of MurmurHash 2.0 found at that site was ported to Java by * Andrzej Bialecki (ab at getopt org). * </p> * * <p> * This originally came from Cassandra, for Volt we had to modify it to match * the native and canonical implementation. The switch statement handling dangling * bytes at the end wasn't converting the signed bytes from the ByteBuffer to signed ints, * it was casting them straight to long which means that you could end up with negative numbers when * the canonical algorithm was working with them unsigned. */ public class MurmurHash3 { protected static long getblock(ByteBuffer key, int offset, int index) { int i_8 = index << 3; int blockOffset = offset + i_8; return ((long) key.get(blockOffset + 0) & 0xFFL) + (((long) key.get(blockOffset + 1) & 0xFFL) << 8) + (((long) key.get(blockOffset + 2) & 0xFFL) << 16) + (((long) key.get(blockOffset + 3) & 0xFFL) << 24) + (((long) key.get(blockOffset + 4) & 0xFFL) << 32) + (((long) key.get(blockOffset + 5) & 0xFFL) << 40) + (((long) key.get(blockOffset + 6) & 0xFFL) << 48) + (((long) key.get(blockOffset + 7) & 0xFFL) << 56); } protected static long rotl64(long v, int n) { return ((v << n) | (v >>> (64 - n))); } protected static long fmix(long k) { k ^= k >>> 33; k *= 0xff51afd7ed558ccdL; k ^= k >>> 33; k *= 0xc4ceb9fe1a85ec53L; k ^= k >>> 33; return k; } public static int hash3_x64_128(long value) { return hash3_x64_128(value, 0); } public static int hash3_x64_128(long value, long seed) { ByteBuffer buf = ByteBuffer.allocate(8); buf.order(ByteOrder.LITTLE_ENDIAN); buf.putLong(value); return hash3_x64_128(buf, 0, 8, seed); } private final static long MASK = 0xFFFFFFFF00000000L; public static int hash3_x64_128(ByteBuffer key, int offset, int length, long seed) { final int nblocks = length >> 4; // Process as 128-bit blocks. long h1 = seed; long h2 = seed; long c1 = 0x87c37b91114253d5L; long c2 = 0x4cf5ad432745937fL; //---------- // body for(int i = 0; i < nblocks; i++) { long k1 = getblock(key, offset, i*2+0); long k2 = getblock(key, offset, i*2+1); k1 *= c1; k1 = rotl64(k1,31); k1 *= c2; h1 ^= k1; h1 = rotl64(h1,27); h1 += h2; h1 = h1*5+0x52dce729; k2 *= c2; k2 = rotl64(k2,33); k2 *= c1; h2 ^= k2; h2 = rotl64(h2,31); h2 += h1; h2 = h2*5+0x38495ab5; } //---------- // tail // Advance offset to the unprocessed tail of the data. offset += nblocks * 16; long k1 = 0; long k2 = 0; /* * For Volt had to add UnsignedBytes.toInt to make the hash output * match the native and canonical implementation of MurmurHash3 */ switch(length & 15) { case 15: k2 ^= ((long) UnsignedBytes.toInt(key.get(offset+14))) << 48; case 14: k2 ^= ((long) UnsignedBytes.toInt(key.get(offset+13))) << 40; case 13: k2 ^= ((long) UnsignedBytes.toInt(key.get(offset+12))) << 32; case 12: k2 ^= ((long) UnsignedBytes.toInt(key.get(offset+11))) << 24; case 11: k2 ^= ((long) UnsignedBytes.toInt(key.get(offset+10))) << 16; case 10: k2 ^= ((long) UnsignedBytes.toInt(key.get(offset+9))) << 8; case 9: k2 ^= ((long) UnsignedBytes.toInt(key.get(offset+8))) << 0; k2 *= c2; k2 = rotl64(k2,33); k2 *= c1; h2 ^= k2; case 8: k1 ^= ((long) UnsignedBytes.toInt(key.get(offset+7))) << 56; case 7: k1 ^= ((long) UnsignedBytes.toInt(key.get(offset+6))) << 48; case 6: k1 ^= ((long) UnsignedBytes.toInt(key.get(offset+5))) << 40; case 5: k1 ^= ((long) UnsignedBytes.toInt(key.get(offset+4))) << 32; case 4: k1 ^= ((long) UnsignedBytes.toInt(key.get(offset+3))) << 24; case 3: k1 ^= ((long) UnsignedBytes.toInt(key.get(offset+2))) << 16; case 2: k1 ^= ((long) UnsignedBytes.toInt(key.get(offset+1))) << 8; case 1: k1 ^= ((long) UnsignedBytes.toInt(key.get(offset))); k1 *= c1; k1 = rotl64(k1,31); k1 *= c2; h1 ^= k1; }; //---------- // finalization h1 ^= length; h2 ^= length; h1 += h2; h2 += h1; h1 = fmix(h1); h2 = fmix(h2); h1 += h2; h2 += h1; //Shift so that we use the higher order bits in case we want to use the lower order ones later //Also use the h1 higher order bits because it provided much better performance in voter, consistent too return (int)(h1 >>> 32); } }