package cc.mallet.fst; import java.io.IOException; import java.io.ObjectInputStream; import java.io.ObjectOutputStream; import java.util.ArrayList; import java.util.Random; import java.util.logging.Logger; import cc.mallet.optimize.LimitedMemoryBFGS; import cc.mallet.optimize.Optimizer; import cc.mallet.types.ExpGain; import cc.mallet.types.FeatureInducer; import cc.mallet.types.FeatureSelection; import cc.mallet.types.FeatureVector; import cc.mallet.types.GradientGain; import cc.mallet.types.InfoGain; import cc.mallet.types.Instance; import cc.mallet.types.InstanceList; import cc.mallet.types.Label; import cc.mallet.types.LabelAlphabet; import cc.mallet.types.LabelSequence; import cc.mallet.types.LabelVector; import cc.mallet.types.RankedFeatureVector; import cc.mallet.types.Sequence; import cc.mallet.util.MalletLogger; /** * Unlike ClassifierTrainer, TransducerTrainer is not "stateless" between calls * to train. A TransducerTrainer is constructed paired with a specific * Transducer, and can only train that Transducer. CRF stores and has methods * for FeatureSelection and weight freezing. CRFTrainer stores and has methods * for determining the contents/dimensions/sparsity/FeatureInduction of the * CRF's weights as determined by training data. * <p> * <b>Note:</b> In the future this class may go away in favor of some default * version of CRFTrainerByValueGradients. */ public class CRFTrainerByLabelLikelihood extends TransducerTrainer implements TransducerTrainer.ByOptimization { private static Logger logger = MalletLogger.getLogger(CRFTrainerByLabelLikelihood.class.getName()); static final double DEFAULT_GAUSSIAN_PRIOR_VARIANCE = 1.0; static final double DEFAULT_HYPERBOLIC_PRIOR_SLOPE = 0.2; static final double DEFAULT_HYPERBOLIC_PRIOR_SHARPNESS = 10.0; CRF crf; //OptimizableCRF ocrf; CRFOptimizableByLabelLikelihood ocrf; Optimizer opt; int iterationCount = 0; boolean converged; boolean usingHyperbolicPrior = false; double gaussianPriorVariance = DEFAULT_GAUSSIAN_PRIOR_VARIANCE; double hyperbolicPriorSlope = DEFAULT_HYPERBOLIC_PRIOR_SLOPE; double hyperbolicPriorSharpness = DEFAULT_HYPERBOLIC_PRIOR_SHARPNESS; boolean useSparseWeights = true; boolean useNoWeights = false; // TODO remove this; it is just for debugging private transient boolean useSomeUnsupportedTrick = true; // Various values from CRF acting as indicators of when we need to ... private int cachedValueWeightsStamp = -1; // ... re-calculate expectations and values to getValue() because weights' values changed private int cachedGradientWeightsStamp = -1; // ... re-calculate to getValueGradient() because weights' values changed private int cachedWeightsStructureStamp = -1; // ... re-allocate crf.weights, expectations & constraints because new states, transitions // Use mcrf.trainingSet to see when we need to re-allocate crf.weights, expectations & constraints because we are using a different TrainingList than last time // xxx temporary hack. This is quite useful to have, though!! -cas public boolean printGradient = false; public CRFTrainerByLabelLikelihood (CRF crf) { this.crf = crf; } public Transducer getTransducer() { return crf; } public CRF getCRF () { return crf; } public Optimizer getOptimizer() { return opt; } public boolean isConverged() { return converged; } public boolean isFinishedTraining() { return converged; } public int getIteration () { return iterationCount; } /** * Use this method to specify whether or not factors * are added to the CRF by this trainer. If you have * already setup the factors in your CRF, you may * not want the trainer to add additional factors. * * @param flag If true, this trainer adds no factors to the CRF. */ public void setAddNoFactors(boolean flag) { this.useNoWeights = flag; } public CRFOptimizableByLabelLikelihood getOptimizableCRF (InstanceList trainingSet) { if (cachedWeightsStructureStamp != crf.weightsStructureChangeStamp) { if (!useNoWeights) { if (useSparseWeights) crf.setWeightsDimensionAsIn (trainingSet, useSomeUnsupportedTrick); else crf.setWeightsDimensionDensely (); } //reallocateSufficientStatistics(); // Not necessary here because it is done in the constructor for OptimizableCRF ocrf = null; cachedWeightsStructureStamp = crf.weightsStructureChangeStamp; } if (ocrf == null || ocrf.trainingSet != trainingSet) { //ocrf = new OptimizableCRF (crf, trainingSet); ocrf = new CRFOptimizableByLabelLikelihood(crf, trainingSet); ocrf.setGaussianPriorVariance(gaussianPriorVariance); ocrf.setHyperbolicPriorSharpness(hyperbolicPriorSharpness); ocrf.setHyperbolicPriorSlope(hyperbolicPriorSlope); ocrf.setUseHyperbolicPrior(usingHyperbolicPrior); opt = null; } return ocrf; } public Optimizer getOptimizer (InstanceList trainingSet) { getOptimizableCRF(trainingSet); // this will set this.mcrf if necessary if (opt == null || ocrf != opt.getOptimizable()) opt = new LimitedMemoryBFGS(ocrf); // Alternative: opt = new ConjugateGradient (0.001); return opt; } // Java question: // If I make a non-static inner class CRF.Trainer, // can that class by subclassed in another .java file, // and can that subclass still have access to all the CRF's // instance variables? // ANSWER: Yes and yes, but you have to use special syntax in the subclass ctor (see mallet-dev archive) -cas public boolean trainIncremental (InstanceList training) { return train (training, Integer.MAX_VALUE); } public boolean train (InstanceList trainingSet, int numIterations) { if (numIterations <= 0) return false; assert (trainingSet.size() > 0); getOptimizableCRF(trainingSet); // This will set this.mcrf if necessary getOptimizer(trainingSet); // This will set this.opt if necessary boolean converged = false; logger.info ("CRF about to train with "+numIterations+" iterations"); for (int i = 0; i < numIterations; i++) { try { converged = opt.optimize (1); iterationCount++; logger.info ("CRF finished one iteration of maximizer, i="+i); runEvaluators(); } catch (IllegalArgumentException e) { e.printStackTrace(); logger.info ("Catching exception; saying converged."); converged = true; } catch (Exception e) { e.printStackTrace(); logger.info("Catching exception; saying converged."); converged = true; } if (converged) { logger.info ("CRF training has converged, i="+i); break; } } return converged; } /** * Train a CRF on various-sized subsets of the data. This method is typically used to accelerate training by * quickly getting to reasonable parameters on only a subset of the parameters first, then on progressively more data. * @param training The training Instances. * @param numIterationsPerProportion Maximum number of Maximizer iterations per training proportion. * @param trainingProportions If non-null, train on increasingly * larger portions of the data, e.g. new double[] {0.2, 0.5, 1.0}. This can sometimes speedup convergence. * Be sure to end in 1.0 if you want to train on all the data in the end. * @return True if training has converged. */ public boolean train (InstanceList training, int numIterationsPerProportion, double[] trainingProportions) { int trainingIteration = 0; assert (trainingProportions.length > 0); boolean converged = false; for (int i = 0; i < trainingProportions.length; i++) { assert (trainingProportions[i] <= 1.0); logger.info ("Training on "+trainingProportions[i]+"% of the data this round."); if (trainingProportions[i] == 1.0) converged = this.train (training, numIterationsPerProportion); else converged = this.train (training.split (new Random(1), new double[] {trainingProportions[i], 1-trainingProportions[i]})[0], numIterationsPerProportion); trainingIteration += numIterationsPerProportion; } return converged; } public boolean trainWithFeatureInduction (InstanceList trainingData, InstanceList validationData, InstanceList testingData, TransducerEvaluator eval, int numIterations, int numIterationsBetweenFeatureInductions, int numFeatureInductions, int numFeaturesPerFeatureInduction, double trueLabelProbThreshold, boolean clusteredFeatureInduction, double[] trainingProportions) { return trainWithFeatureInduction (trainingData, validationData, testingData, eval, numIterations, numIterationsBetweenFeatureInductions, numFeatureInductions, numFeaturesPerFeatureInduction, trueLabelProbThreshold, clusteredFeatureInduction, trainingProportions, "exp"); } /** * Train a CRF using feature induction to generate conjunctions of * features. Feature induction is run periodically during * training. The features are added to improve performance on the * mislabeled instances, with the specific scoring criterion given * by the {@link FeatureInducer} specified by <code>gainName</code> * * @param training The training Instances. * @param validation The validation Instances. * @param testing The testing instances. * @param eval For evaluation during training. * @param numIterations Maximum number of Maximizer iterations. * @param numIterationsBetweenFeatureInductions Number of maximizer * iterations between each call to the Feature Inducer. * @param numFeatureInductions Maximum number of rounds of feature * induction. * @param numFeaturesPerFeatureInduction Maximum number of features * to induce at each round of induction. * @param trueLabelProbThreshold If the model's probability of the * true Label of an Instance is less than this value, it is added as * an error instance to the {@link FeatureInducer}. * @param clusteredFeatureInduction If true, a separate {@link * FeatureInducer} is constructed for each label pair. This can * avoid inducing a disproportionate number of features for a single * label. * @param trainingProportions If non-null, train on increasingly * larger portions of the data (e.g. [0.2, 0.5, 1.0]. This can * sometimes speedup convergence. * @param gainName The type of {@link FeatureInducer} to use. One of * "exp", "grad", or "info" for {@link ExpGain}, {@link * GradientGain}, or {@link InfoGain}. * @return True if training has converged. */ public boolean trainWithFeatureInduction (InstanceList trainingData, InstanceList validationData, InstanceList testingData, TransducerEvaluator eval, int numIterations, int numIterationsBetweenFeatureInductions, int numFeatureInductions, int numFeaturesPerFeatureInduction, double trueLabelProbThreshold, boolean clusteredFeatureInduction, double[] trainingProportions, String gainName) { int trainingIteration = 0; int numLabels = crf.outputAlphabet.size(); crf.globalFeatureSelection = trainingData.getFeatureSelection(); if (crf.globalFeatureSelection == null) { // Mask out all features; some will be added later by FeatureInducer.induceFeaturesFor(.) crf.globalFeatureSelection = new FeatureSelection (trainingData.getDataAlphabet()); trainingData.setFeatureSelection (crf.globalFeatureSelection); } // TODO Careful! If validationData and testingData get removed as arguments to this method // then the next two lines of work will have to be done somewhere. if (validationData != null) validationData.setFeatureSelection (crf.globalFeatureSelection); if (testingData != null) testingData.setFeatureSelection (crf.globalFeatureSelection); for (int featureInductionIteration = 0; featureInductionIteration < numFeatureInductions; featureInductionIteration++) { // Print out some feature information logger.info ("Feature induction iteration "+featureInductionIteration); // Train the CRF InstanceList theTrainingData = trainingData; if (trainingProportions != null && featureInductionIteration < trainingProportions.length) { logger.info ("Training on "+trainingProportions[featureInductionIteration]+"% of the data this round."); InstanceList[] sampledTrainingData = trainingData.split (new Random(1), new double[] {trainingProportions[featureInductionIteration], 1-trainingProportions[featureInductionIteration]}); theTrainingData = sampledTrainingData[0]; theTrainingData.setFeatureSelection (crf.globalFeatureSelection); // xxx necessary? logger.info (" which is "+theTrainingData.size()+" instances"); } boolean converged = false; if (featureInductionIteration != 0) // Don't train until we have added some features converged = this.train (theTrainingData, numIterationsBetweenFeatureInductions); trainingIteration += numIterationsBetweenFeatureInductions; logger.info ("Starting feature induction with "+crf.inputAlphabet.size()+" features."); // Create the list of error tokens, for both unclustered and clustered feature induction InstanceList errorInstances = new InstanceList (trainingData.getDataAlphabet(), trainingData.getTargetAlphabet()); // This errorInstances.featureSelection will get examined by FeatureInducer, // so it can know how to add "new" singleton features errorInstances.setFeatureSelection (crf.globalFeatureSelection); ArrayList errorLabelVectors = new ArrayList(); InstanceList clusteredErrorInstances[][] = new InstanceList[numLabels][numLabels]; ArrayList clusteredErrorLabelVectors[][] = new ArrayList[numLabels][numLabels]; for (int i = 0; i < numLabels; i++) for (int j = 0; j < numLabels; j++) { clusteredErrorInstances[i][j] = new InstanceList (trainingData.getDataAlphabet(), trainingData.getTargetAlphabet()); clusteredErrorInstances[i][j].setFeatureSelection (crf.globalFeatureSelection); clusteredErrorLabelVectors[i][j] = new ArrayList(); } for (int i = 0; i < theTrainingData.size(); i++) { logger.info ("instance="+i); Instance instance = theTrainingData.get(i); Sequence input = (Sequence) instance.getData(); Sequence trueOutput = (Sequence) instance.getTarget(); assert (input.size() == trueOutput.size()); SumLattice lattice = crf.sumLatticeFactory.newSumLattice (crf, input, (Sequence)null, (Transducer.Incrementor)null, (LabelAlphabet)theTrainingData.getTargetAlphabet()); int prevLabelIndex = 0; // This will put extra error instances in this cluster for (int j = 0; j < trueOutput.size(); j++) { Label label = (Label) ((LabelSequence)trueOutput).getLabelAtPosition(j); assert (label != null); //System.out.println ("Instance="+i+" position="+j+" fv="+lattice.getLabelingAtPosition(j).toString(true)); LabelVector latticeLabeling = lattice.getLabelingAtPosition(j); double trueLabelProb = latticeLabeling.value(label.getIndex()); int labelIndex = latticeLabeling.getBestIndex(); //System.out.println ("position="+j+" trueLabelProb="+trueLabelProb); if (trueLabelProb < trueLabelProbThreshold) { logger.info ("Adding error: instance="+i+" position="+j+" prtrue="+trueLabelProb+ (label == latticeLabeling.getBestLabel() ? " " : " *")+ " truelabel="+label+ " predlabel="+latticeLabeling.getBestLabel()+ " fv="+((FeatureVector)input.get(j)).toString(true)); errorInstances.add (input.get(j), label, null, null); errorLabelVectors.add (latticeLabeling); clusteredErrorInstances[prevLabelIndex][labelIndex].add (input.get(j), label, null, null); clusteredErrorLabelVectors[prevLabelIndex][labelIndex].add (latticeLabeling); } prevLabelIndex = labelIndex; } } logger.info ("Error instance list size = "+errorInstances.size()); if (clusteredFeatureInduction) { FeatureInducer[][] klfi = new FeatureInducer[numLabels][numLabels]; for (int i = 0; i < numLabels; i++) { for (int j = 0; j < numLabels; j++) { // Note that we may see some "impossible" transitions here (like O->I in a OIB model) // because we are using lattice gammas to get the predicted label, not Viterbi. // I don't believe this does any harm, and may do some good. logger.info ("Doing feature induction for "+ crf.outputAlphabet.lookupObject(i)+" -> "+crf.outputAlphabet.lookupObject(j)+ " with "+clusteredErrorInstances[i][j].size()+" instances"); if (clusteredErrorInstances[i][j].size() < 20) { logger.info ("..skipping because only "+clusteredErrorInstances[i][j].size()+" instances."); continue; } int s = clusteredErrorLabelVectors[i][j].size(); LabelVector[] lvs = new LabelVector[s]; for (int k = 0; k < s; k++) lvs[k] = (LabelVector) clusteredErrorLabelVectors[i][j].get(k); RankedFeatureVector.Factory gainFactory = null; if (gainName.equals ("exp")) gainFactory = new ExpGain.Factory (lvs, gaussianPriorVariance); else if (gainName.equals("grad")) gainFactory = new GradientGain.Factory (lvs); else if (gainName.equals("info")) gainFactory = new InfoGain.Factory (); klfi[i][j] = new FeatureInducer (gainFactory, clusteredErrorInstances[i][j], numFeaturesPerFeatureInduction, 2*numFeaturesPerFeatureInduction, 2*numFeaturesPerFeatureInduction); crf.featureInducers.add(klfi[i][j]); } } for (int i = 0; i < numLabels; i++) { for (int j = 0; j < numLabels; j++) { logger.info ("Adding new induced features for "+ crf.outputAlphabet.lookupObject(i)+" -> "+crf.outputAlphabet.lookupObject(j)); if (klfi[i][j] == null) { logger.info ("...skipping because no features induced."); continue; } // Note that this adds features globally, but not on a per-transition basis klfi[i][j].induceFeaturesFor (trainingData, false, false); if (testingData != null) klfi[i][j].induceFeaturesFor (testingData, false, false); } } klfi = null; } else { int s = errorLabelVectors.size(); LabelVector[] lvs = new LabelVector[s]; for (int i = 0; i < s; i++) lvs[i] = (LabelVector) errorLabelVectors.get(i); RankedFeatureVector.Factory gainFactory = null; if (gainName.equals ("exp")) gainFactory = new ExpGain.Factory (lvs, gaussianPriorVariance); else if (gainName.equals("grad")) gainFactory = new GradientGain.Factory (lvs); else if (gainName.equals("info")) gainFactory = new InfoGain.Factory (); FeatureInducer klfi = new FeatureInducer (gainFactory, errorInstances, numFeaturesPerFeatureInduction, 2*numFeaturesPerFeatureInduction, 2*numFeaturesPerFeatureInduction); crf.featureInducers.add(klfi); // Note that this adds features globally, but not on a per-transition basis klfi.induceFeaturesFor (trainingData, false, false); if (testingData != null) klfi.induceFeaturesFor (testingData, false, false); logger.info ("CRF4 FeatureSelection now includes "+crf.globalFeatureSelection.cardinality()+" features"); klfi = null; } // This is done in CRF4.train() anyway //this.setWeightsDimensionAsIn (trainingData); ////this.growWeightsDimensionToInputAlphabet (); } return this.train (trainingData, numIterations - trainingIteration); } public void setUseHyperbolicPrior (boolean f) { usingHyperbolicPrior = f; } public void setHyperbolicPriorSlope (double p) { hyperbolicPriorSlope = p; } public void setHyperbolicPriorSharpness (double p) { hyperbolicPriorSharpness = p; } public double getUseHyperbolicPriorSlope () { return hyperbolicPriorSlope; } public double getUseHyperbolicPriorSharpness () { return hyperbolicPriorSharpness; } public void setGaussianPriorVariance (double p) { gaussianPriorVariance = p; } public double getGaussianPriorVariance () { return gaussianPriorVariance; } //public int getDefaultFeatureIndex () { return defaultFeatureIndex;} public void setUseSparseWeights (boolean b) { useSparseWeights = b; } public boolean getUseSparseWeights () { return useSparseWeights; } /** Sets whether to use the 'some unsupported trick.' This trick is, if training a CRF * where some training has been done and sparse weights are used, to add a few weights * for feaures that do not occur in the tainig data. * <p> * This generally leads to better accuracy at only a small memory cost. * * @param b Whether to use the trick */ public void setUseSomeUnsupportedTrick (boolean b) { useSomeUnsupportedTrick = b; } // Serialization for CRFTrainerByLikelihood private static final long serialVersionUID = 1; private static final int CURRENT_SERIAL_VERSION = 1; static final int NULL_INTEGER = -1; /* Need to check for null pointers. */ private void writeObject (ObjectOutputStream out) throws IOException { int i, size; out.writeInt (CURRENT_SERIAL_VERSION); //out.writeInt(defaultFeatureIndex); out.writeBoolean(usingHyperbolicPrior); out.writeDouble(gaussianPriorVariance); out.writeDouble(hyperbolicPriorSlope); out.writeDouble(hyperbolicPriorSharpness); out.writeInt(cachedGradientWeightsStamp); out.writeInt(cachedValueWeightsStamp); out.writeInt(cachedWeightsStructureStamp); out.writeBoolean(printGradient); out.writeBoolean (useSparseWeights); throw new IllegalStateException("Implementation not yet complete."); } private void readObject (ObjectInputStream in) throws IOException, ClassNotFoundException { int size, i; int version = in.readInt (); //defaultFeatureIndex = in.readInt(); usingHyperbolicPrior = in.readBoolean(); gaussianPriorVariance = in.readDouble(); hyperbolicPriorSlope = in.readDouble(); hyperbolicPriorSharpness = in.readDouble(); printGradient = in.readBoolean(); useSparseWeights = in.readBoolean(); throw new IllegalStateException("Implementation not yet complete."); } }