/* Copyright (C) 2011 Univ. of Massachusetts Amherst, Computer Science Dept. This file is part of "MALLET" (MAchine Learning for LanguagE Toolkit). http://www.cs.umass.edu/~mccallum/mallet This software is provided under the terms of the Common Public License, version 1.0, as published by http://www.opensource.org. For further information, see the file `LICENSE' included with this distribution. */ package cc.mallet.classify.constraints.pr; import gnu.trove.TIntIntHashMap; import cc.mallet.types.FeatureVector; /** * Expectation constraint for use with Posterior Regularization (PR). * Penalizes L_2^2 difference from target distribution. * * @author Gregory Druck */ public class MaxEntL2FLPRConstraints extends MaxEntFLPRConstraints { private TIntIntHashMap constraintIndices; private boolean normalize; public MaxEntL2FLPRConstraints(int numFeatures, int numLabels, boolean useValues, boolean normalize) { super(numFeatures, numLabels, useValues); this.constraintIndices = new TIntIntHashMap(); this.normalize = normalize; } @Override public void addConstraint(int fi, double[] ex, double weight) { constraints.put(fi,new MaxEntL2FLPRConstraint(ex,weight)); constraintIndices.put(fi, constraintIndices.size()); } protected class MaxEntL2FLPRConstraint extends MaxEntFLPRConstraint { public MaxEntL2FLPRConstraint(double[] target, double weight) { super(target, weight); } } public int numDimensions() { return constraints.size() * numLabels; } public double getAuxiliaryValueContribution(double[] parameters) { double value = 0; for (int fi : constraints.keys()) { int ci = constraintIndices.get(fi); for (int li = 0; li < numLabels; li++) { double param = parameters[ci + li * constraints.size()]; // targets dot parameters value += constraints.get(fi).target[li] * param; // regularization value -= param * param / (2 * constraints.get(fi).weight); } } return value; } public void getGradient(double[] parameters, double[] gradient) { for (int fi : constraints.keys()) { int ci = constraintIndices.get(fi); double norm; if (normalize) { norm = constraints.get(fi).count; } else { norm = 1; } for (int li = 0; li < numLabels; li++) { double param = parameters[ci + li * constraints.size()]; gradient[ci + li * constraints.size()] = constraints.get(fi).target[li] - constraints.get(fi).expectation[li] / norm; // regularization gradient[ci + li * constraints.size()] -= param / constraints.get(fi).weight; } } } public double getCompleteValueContribution() { double value = 0; for (int fi : constraints.keys()) { double norm; if (normalize) { norm = constraints.get(fi).count; } else { norm = 1; } for (int li = 0; li < numLabels; li++) { value -= constraints.get(fi).weight * Math.pow(constraints.get(fi).target[li] - constraints.get(fi).expectation[li] / norm, 2) / 2; } } return value; } public double getScore(FeatureVector input, int label, double[] parameters) { double score = 0; for (int i = 0; i < indexCache.size(); i++) { int ci = constraintIndices.get(indexCache.getQuick(i)); double param = parameters[ci + label * constraints.size()]; double norm; if (normalize) { norm = constraints.get(indexCache.getQuick(i)).count; } else { norm = 1; } if (useValues) { score += param * valueCache.getQuick(i) / norm; } else { score += param / norm; } } return score; } }