/** * Copyright (C) 2001-2017 by RapidMiner and the contributors * * Complete list of developers available at our web site: * * http://rapidminer.com * * This program is free software: you can redistribute it and/or modify it under the terms of the * GNU Affero General Public License as published by the Free Software Foundation, either version 3 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without * even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License along with this program. * If not, see http://www.gnu.org/licenses/. */ package com.rapidminer.tools.expression.internal.function.basic; import java.util.Arrays; import java.util.HashSet; import java.util.Set; import java.util.concurrent.Callable; import com.rapidminer.tools.Ontology; import com.rapidminer.tools.Tools; import com.rapidminer.tools.expression.DoubleCallable; import com.rapidminer.tools.expression.ExpressionEvaluator; import com.rapidminer.tools.expression.ExpressionParsingException; import com.rapidminer.tools.expression.ExpressionType; import com.rapidminer.tools.expression.FunctionDescription; import com.rapidminer.tools.expression.FunctionInputException; import com.rapidminer.tools.expression.internal.SimpleExpressionEvaluator; import com.rapidminer.tools.expression.internal.function.Abstract2DoubleInputFunction; /** * A {@link Function} for addition. * * @author Gisa Schaefer * */ public class Plus extends Abstract2DoubleInputFunction { /** * The {@link ExpressionType}s that are allowed to be added to a ExpressionType.STRING */ private static final Set<ExpressionType> STRING_ALLOWED_SET = new HashSet<ExpressionType>(Arrays.asList( ExpressionType.STRING, ExpressionType.DOUBLE, ExpressionType.INTEGER, ExpressionType.BOOLEAN)); /** * Constructs an addition function. */ public Plus() { super("basic.addition", FunctionDescription.UNFIXED_NUMBER_OF_ARGUMENTS, Ontology.ATTRIBUTE_VALUE); } @Override public ExpressionEvaluator compute(ExpressionEvaluator... inputEvaluators) { if (inputEvaluators.length != 2 && inputEvaluators.length != 1) { throw new FunctionInputException("expression_parser.function_wrong_input_two", getFunctionName(), 1, 2, inputEvaluators.length); } ExpressionType type = getResultType(inputEvaluators); if (type == ExpressionType.DOUBLE || type == ExpressionType.INTEGER) { if (inputEvaluators.length == 1) { return inputEvaluators[0]; } else { return new SimpleExpressionEvaluator(makeDoubleCallable(inputEvaluators[0], inputEvaluators[1]), type, isResultConstant(inputEvaluators)); } } else { // return type is string return new SimpleExpressionEvaluator(makeStringCallable(inputEvaluators[0], inputEvaluators[1]), type, isResultConstant(inputEvaluators)); } } /** * Constructs a String callable from left and right by distinguishing the types of left and * right and using the associated {{@link #compute()} method. * * @param left * @param right * @return */ private Callable<String> makeStringCallable(ExpressionEvaluator left, ExpressionEvaluator right) { try { if (left.getType() == ExpressionType.STRING && right.getType() == ExpressionType.STRING) { final Callable<String> funcLeft = left.getStringFunction(); final Callable<String> funcRight = right.getStringFunction(); final String valueLeft = left.isConstant() ? funcLeft.call() : null; final String valueRight = right.isConstant() ? funcRight.call() : null; if (left.isConstant() && right.isConstant()) { final String result = compute(valueLeft, valueRight); return new Callable<String>() { @Override public String call() throws Exception { return result; } }; } else if (left.isConstant()) { return new Callable<String>() { @Override public String call() throws Exception { return compute(valueLeft, funcRight.call()); } }; } else if (right.isConstant()) { return new Callable<String>() { @Override public String call() throws Exception { return compute(funcLeft.call(), valueRight); } }; } else { return new Callable<String>() { @Override public String call() throws Exception { return compute(funcLeft.call(), funcRight.call()); } }; } } else if (left.getType() == ExpressionType.STRING) { final Callable<String> funcLeft = left.getStringFunction(); final String valueLeft = left.isConstant() ? funcLeft.call() : null; if (right.getType() == ExpressionType.DOUBLE || right.getType() == ExpressionType.INTEGER) { final DoubleCallable funcRight = right.getDoubleFunction(); final double valueRight = right.isConstant() ? funcRight.call() : Double.NaN; final boolean isInteger = right.getType() == ExpressionType.INTEGER; if (left.isConstant() && right.isConstant()) { final String result = compute(valueLeft, valueRight, isInteger); return new Callable<String>() { @Override public String call() throws Exception { return result; } }; } else if (left.isConstant()) { return new Callable<String>() { @Override public String call() throws Exception { return compute(valueLeft, funcRight.call(), isInteger); } }; } else if (right.isConstant()) { return new Callable<String>() { @Override public String call() throws Exception { return compute(funcLeft.call(), valueRight, isInteger); } }; } else { return new Callable<String>() { @Override public String call() throws Exception { return compute(funcLeft.call(), funcRight.call(), isInteger); } }; } } else { // right is boolean final Callable<Boolean> funcRight = right.getBooleanFunction(); final Boolean valueRight = right.isConstant() ? funcRight.call() : null; if (left.isConstant() && right.isConstant()) { final String result = compute(valueLeft, valueRight); return new Callable<String>() { @Override public String call() throws Exception { return result; } }; } else if (left.isConstant()) { return new Callable<String>() { @Override public String call() throws Exception { return compute(valueLeft, funcRight.call()); } }; } else if (right.isConstant()) { return new Callable<String>() { @Override public String call() throws Exception { return compute(funcLeft.call(), valueRight); } }; } else { return new Callable<String>() { @Override public String call() throws Exception { return compute(funcLeft.call(), funcRight.call()); } }; } } } else { // right is STRING final Callable<String> funcRight = right.getStringFunction(); final String valueRight = right.isConstant() ? funcRight.call() : null; if (left.getType() == ExpressionType.DOUBLE || left.getType() == ExpressionType.INTEGER) { final DoubleCallable funcLeft = left.getDoubleFunction(); final double valueLeft = left.isConstant() ? funcLeft.call() : Double.NaN; final boolean isInteger = left.getType() == ExpressionType.INTEGER; if (left.isConstant() && right.isConstant()) { final String result = compute(valueLeft, valueRight, isInteger); return new Callable<String>() { @Override public String call() throws Exception { return result; } }; } else if (left.isConstant()) { return new Callable<String>() { @Override public String call() throws Exception { return compute(valueLeft, funcRight.call(), isInteger); } }; } else if (right.isConstant()) { return new Callable<String>() { @Override public String call() throws Exception { return compute(funcLeft.call(), valueRight, isInteger); } }; } else { return new Callable<String>() { @Override public String call() throws Exception { return compute(funcLeft.call(), funcRight.call(), isInteger); } }; } } else { // left is boolean final Callable<Boolean> funcLeft = left.getBooleanFunction(); final Boolean valueLeft = left.isConstant() ? funcLeft.call() : null; if (left.isConstant() && right.isConstant()) { final String result = compute(valueLeft, valueRight); return new Callable<String>() { @Override public String call() throws Exception { return result; } }; } else if (left.isConstant()) { return new Callable<String>() { @Override public String call() throws Exception { return compute(valueLeft, funcRight.call()); } }; } else if (right.isConstant()) { return new Callable<String>() { @Override public String call() throws Exception { return compute(funcLeft.call(), valueRight); } }; } else { return new Callable<String>() { @Override public String call() throws Exception { return compute(funcLeft.call(), funcRight.call()); } }; } } } } catch (ExpressionParsingException e) { throw e; } catch (Exception e) { throw new ExpressionParsingException(e); } } /** * Adds two Strings. If both are missing, then the result is missing; if one is missing, it is * ignored. */ private String compute(String left, String right) { if (left == null && right == null) { return null; } return (left == null ? "" : left) + (right == null ? "" : right); } /** * Adds a String and a double. If the double represents an integer tries to add it without * trailing '.0'. If both are missing, then the result is missing; if one is missing, it is * ignored. If the double is infinite, formats is using a symbol. * * @param left * @param right * @param isInteger * whether the double represents an {@link ExpressionType#INTEGER} * @return */ private String compute(String left, double right, boolean isInteger) { if (left == null && Double.isNaN(right)) { return null; } if (isInteger && right == (int) right) { return (left == null ? "" : left) + (int) right; } else if (Double.isInfinite(right)) { return (left == null ? "" : left) + Tools.formatNumber(right); } else { return (left == null ? "" : left) + (Double.isNaN(right) ? "" : right); } } /** * Adds a String and a Boolean. If both are missing, then the result is missing; if one is * missing, it is ignored. */ private String compute(String left, Boolean right) { if (left == null && right == null) { return null; } return (left == null ? "" : left) + (right == null ? "" : right); } /** * Adds a Boolean and a String. If both are missing, then the result is missing; if one is * missing, it is ignored. */ private String compute(Boolean left, String right) { if (left == null && right == null) { return null; } return (left == null ? "" : left) + (right == null ? "" : right); } /** * Adds a double and a String. If the double represents an integer tries to add it without * trailing '.0'. If both are missing, then the result is missing; if one is missing, it is * ignored. If the double is infinite, formats is using a symbol. * * @param left * @param right * @param isInteger * whether the double represents an {@link ExpressionType#INTEGER} * @return */ private String compute(double left, String right, boolean isInteger) { if (Double.isNaN(left) && right == null) { return null; } if (isInteger && left == (int) left) { return (int) left + (right == null ? "" : right); } else if (Double.isInfinite(left)) { return Tools.formatNumber(left) + (right == null ? "" : right); } else { return (Double.isNaN(left) ? "" : left) + (right == null ? "" : right); } } @Override protected double compute(double value1, double value2) { return value1 + value2; } @Override protected ExpressionType computeType(ExpressionType... inputTypes) { ExpressionType firstType = inputTypes[0]; if (inputTypes.length == 1) { if (firstType == ExpressionType.INTEGER || firstType == ExpressionType.DOUBLE) { return firstType; } else { throw new FunctionInputException("expression_parser.function_wrong_type", getFunctionName(), "numerical"); } } else { ExpressionType secondType = inputTypes[1]; if (firstType == ExpressionType.INTEGER && secondType == ExpressionType.INTEGER) { return ExpressionType.INTEGER; } else if ((firstType == ExpressionType.INTEGER || firstType == ExpressionType.DOUBLE) && (secondType == ExpressionType.INTEGER || secondType == ExpressionType.DOUBLE)) { return ExpressionType.DOUBLE; } else if ((firstType == ExpressionType.STRING || secondType == ExpressionType.STRING) && STRING_ALLOWED_SET.contains(firstType) && STRING_ALLOWED_SET.contains(secondType)) { return ExpressionType.STRING; } else { throw new FunctionInputException("expression_parser.function_wrong_type", getFunctionName(), "numerical or nominal"); } } } }