/** * Copyright (C) 2001-2017 by RapidMiner and the contributors * * Complete list of developers available at our web site: * * http://rapidminer.com * * This program is free software: you can redistribute it and/or modify it under the terms of the * GNU Affero General Public License as published by the Free Software Foundation, either version 3 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without * even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License along with this program. * If not, see http://www.gnu.org/licenses/. */ package com.rapidminer.operator.features.transformation; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.List; import com.rapidminer.example.Attribute; import com.rapidminer.example.AttributeWeights; import com.rapidminer.example.Attributes; import com.rapidminer.example.Example; import com.rapidminer.example.ExampleSet; import com.rapidminer.example.Statistics; import com.rapidminer.example.set.ExampleSetUtilities; import com.rapidminer.example.set.ExampleSetUtilities.SetsCompareOption; import com.rapidminer.example.set.ExampleSetUtilities.TypesCompareOption; import com.rapidminer.example.table.AttributeFactory; import com.rapidminer.gui.renderer.models.EigenvectorModelEigenvalueRenderer.EigenvalueTableModel; import com.rapidminer.gui.renderer.models.EigenvectorModelEigenvectorRenderer.EigenvectorTableModel; import com.rapidminer.operator.OperatorException; import com.rapidminer.operator.OperatorProgress; import com.rapidminer.operator.UserError; import com.rapidminer.tools.Ontology; import com.rapidminer.tools.Tools; /** * This is the transformation model of the principal components analysis. The number of components * is initially specified by the <code>PCA</code>. Additionally you can specify the number of * components in the <code>ModelApplier</code>. You can add two prediction parameter: * <ul> * <li><b>variance_threshold</b> <i>double</i> Specify a new threshold for the cumulative variance * of the principal components. * <li><b>number_of_components</b> <i>integer</i> Specify a lower number of components * <li><b>keep_attributes</b> <i>true|false</i> If true, the original features are not removed. * </ul> * * @author Sebastian Land, Daniel Hakenjos, Ingo Mierswa * @see PCA */ public class PCAModel extends AbstractEigenvectorModel implements ComponentWeightsCreatable { private static final long serialVersionUID = 5424591594470376525L; private static final int OPERATOR_PROGRESS_STEPS = 5_000; private List<Eigenvector> eigenVectors; private double[] means; private String[] attributeNames; private boolean manualNumber; private int numberOfComponents = -1; private double varianceThreshold; // ----------------------------------- private double[] variances; private double[] cumulativeVariance; private boolean keepAttributes = false; public PCAModel(ExampleSet eSet, double[] eigenvalues, double[][] eigenvectors) { super(eSet); this.keepAttributes = false; this.attributeNames = new String[eSet.getAttributes().size()]; this.means = new double[eSet.getAttributes().size()]; int counter = 0; eSet.recalculateAllAttributeStatistics(); // ensures that the statistics were created for (Attribute attribute : eSet.getAttributes()) { attributeNames[counter] = attribute.getName(); means[counter] = eSet.getStatistics(attribute, Statistics.AVERAGE); counter++; } this.eigenVectors = new ArrayList<>(eigenvalues.length); for (int i = 0; i < eigenvalues.length; i++) { double[] currentEigenVector = new double[eSet.getAttributes().size()]; for (int j = 0; j < currentEigenVector.length; j++) { currentEigenVector[j] = eigenvectors[j][i]; } this.eigenVectors.add(new Eigenvector(currentEigenVector, eigenvalues[i])); } // order the eigenvectors by the eigenvalues Collections.sort(this.eigenVectors); calculateCumulativeVariance(); } public String[] getAttributeNames() { return attributeNames; } public double[] getMeans() { return means; } public double getMean(int index) { return means[index]; } public double getVariance(int index) { return this.variances[index]; } public double getCumulativeVariance(int index) { return this.cumulativeVariance[index]; } public double getEigenvalue(int index) { return this.eigenVectors.get(index).getEigenvalue(); } public double[] getEigenvector(int index) { return this.eigenVectors.get(index).getEigenvector(); } public double getVarianceThreshold() { return this.varianceThreshold; } public int getMaximumNumberOfComponents() { return attributeNames.length; } public int getNumberOfComponents() { return numberOfComponents; } public void setVarianceThreshold(double threshold) { this.manualNumber = false; this.varianceThreshold = threshold; this.numberOfComponents = -1; } public void setNumberOfComponents(int numberOfComponents) { this.varianceThreshold = 0.95; this.manualNumber = true; this.numberOfComponents = numberOfComponents; } @Override public ExampleSet apply(ExampleSet inputExampleSet) throws OperatorException { ExampleSet exampleSet = (ExampleSet) inputExampleSet.clone(); exampleSet.recalculateAllAttributeStatistics(); Attributes attributes = exampleSet.getAttributes(); if (attributeNames.length != attributes.size()) { throw new UserError(null, 133, attributeNames.length, attributes.size()); } // remember attributes that have been removed during training. These will be removed lateron Attributes trainingHeaderAttributes = getTrainingHeader().getAttributes(); ExampleSetUtilities.checkAttributesMatching(getOperator(), trainingHeaderAttributes, attributes, SetsCompareOption.EQUAL, TypesCompareOption.EQUAL); Attribute[] inputAttributes = new Attribute[trainingHeaderAttributes.size()]; int d = 0; for (Attribute oldAttribute : trainingHeaderAttributes) { inputAttributes[d] = attributes.get(oldAttribute.getName()); d++; } // determining number of used components int numberOfUsedComponents = -1; if (manualNumber) { numberOfUsedComponents = numberOfComponents; } else { if (varianceThreshold == 0.0d) { numberOfUsedComponents = -1; } else { numberOfUsedComponents = 0; while (cumulativeVariance[numberOfUsedComponents] < varianceThreshold) { numberOfUsedComponents++; } numberOfUsedComponents++; if (numberOfUsedComponents == eigenVectors.size()) { numberOfUsedComponents--; } } } if (numberOfUsedComponents == -1) { // keep all components numberOfUsedComponents = attributes.size(); } // retrieve factors inside eigenVectors double[][] eigenValueFactors = new double[numberOfUsedComponents][attributeNames.length]; for (int i = 0; i < numberOfUsedComponents; i++) { eigenValueFactors[i] = this.eigenVectors.get(i).getEigenvector(); } // now build new attributes Attribute[] derivedAttributes = new Attribute[numberOfUsedComponents]; for (int i = 0; i < numberOfUsedComponents; i++) { derivedAttributes[i] = AttributeFactory.createAttribute("pc_" + (i + 1), Ontology.REAL); exampleSet.getExampleTable().addAttribute(derivedAttributes[i]); attributes.addRegular(derivedAttributes[i]); } // now iterator through all examples and derive value of new features double[] derivedValues = new double[numberOfUsedComponents]; OperatorProgress progress = null; if (getShowProgress() && getOperator() != null && getOperator().getProgress() != null) { progress = getOperator().getProgress(); progress.setTotal(exampleSet.size()); } int progressCounter = 0; for (Example example : exampleSet) { // calculate values of new attributes with single scan over attributes d = 0; for (Attribute attribute : inputAttributes) { double attributeValue = example.getValue(attribute) - means[d]; for (int i = 0; i < numberOfUsedComponents; i++) { derivedValues[i] += eigenValueFactors[i][d] * attributeValue; } d++; } // set values for (int i = 0; i < numberOfUsedComponents; i++) { example.setValue(derivedAttributes[i], derivedValues[i]); } // set values back Arrays.fill(derivedValues, 0); // trigger progress if (progress != null && ++progressCounter % OPERATOR_PROGRESS_STEPS == 0) { progress.setCompleted(progressCounter); } } // now remove attributes if needed if (!keepAttributes) { for (Attribute attribute : inputAttributes) { attributes.remove(attribute); } } return exampleSet; } /** Calculates the cumulative variance. */ private void calculateCumulativeVariance() { double sumvariance = 0.0d; for (Eigenvector ev : this.eigenVectors) { sumvariance += ev.getEigenvalue(); } this.variances = new double[this.eigenVectors.size()]; this.cumulativeVariance = new double[variances.length]; double cumulative = 0.0d; int counter = 0; for (Eigenvector ev : this.eigenVectors) { double proportion = ev.getEigenvalue() / sumvariance; this.variances[counter] = proportion; cumulative += proportion; this.cumulativeVariance[counter] = cumulative; counter++; } } @Override public void setParameter(String name, Object object) throws OperatorException { if (name.equals("variance_threshold")) { String value = (String) object; try { this.setVarianceThreshold(Double.parseDouble(value)); } catch (NumberFormatException error) { super.setParameter(name, value); } } else if (name.equals("number_of_components")) { String value = (String) object; try { this.setNumberOfComponents(Integer.parseInt(value)); } catch (NumberFormatException error) { super.setParameter(name, value); } } else if (name.equals("keep_attributes")) { String value = (String) object; keepAttributes = false; if (value.equals("true")) { keepAttributes = true; } } else { super.setParameter(name, object); } } @Override public AttributeWeights getWeightsOfComponent(int component) throws OperatorException { if (component < 1) { component = 1; } if (component > attributeNames.length) { logWarning("Creating weights of component " + attributeNames.length + "!"); component = attributeNames.length; } AttributeWeights weights = new AttributeWeights(); double[] eigenvector = eigenVectors.get(component - 1).getEigenvector(); for (int i = 0; i < attributeNames.length; i++) { weights.setWeight(attributeNames[i], eigenvector[i]); } return weights; } @Override public String toResultString() { StringBuilder result = new StringBuilder( Tools.getLineSeparator() + "Principal Components:" + Tools.getLineSeparator()); if (manualNumber) { result.append("Number of Components: " + numberOfComponents + Tools.getLineSeparator()); } else { result.append("Variance Threshold: " + varianceThreshold + Tools.getLineSeparator()); } for (int i = 0; i < eigenVectors.size(); i++) { result.append("PC " + (i + 1) + ": "); for (int j = 0; j < attributeNames.length; j++) { double value = eigenVectors.get(i).getEigenvector()[j]; if (value > 0) { result.append(" + "); } else { result.append(" - "); } result.append(Tools.formatNumber(Math.abs(value)) + " * " + attributeNames[j]); } result.append(Tools.getLineSeparator()); } return result.toString(); } @Override public String toString() { StringBuilder result = new StringBuilder( Tools.getLineSeparator() + "Principal Components:" + Tools.getLineSeparator()); if (manualNumber) { result.append("Number of Components: " + numberOfComponents + Tools.getLineSeparator()); } else { result.append("Variance Threshold: " + varianceThreshold + Tools.getLineSeparator()); } return result.toString(); } @Override public double[] getCumulativeVariance() { return this.cumulativeVariance; } @Override public EigenvalueTableModel getEigenvalueTableModel() { double varianceSum = 0.0d; for (Eigenvector wv : eigenVectors) { varianceSum += wv.getEigenvalue(); } return new EigenvalueTableModel(eigenVectors, cumulativeVariance, varianceSum); } @Override public EigenvectorTableModel getEigenvectorTableModel() { return new EigenvectorTableModel(eigenVectors, attributeNames, attributeNames.length); } }