/* * $RCSfile: MotionRefValues.java,v $ * * Copyright 1990-2009 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License version * 2 only, as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 for more details (a copy is * included at /legal/license.txt). * * You should have received a copy of the GNU General Public License * version 2 along with this work; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa * Clara, CA 95054 or visit www.sun.com if you need additional * information or have any questions. */ package com.sun.perseus.model; /** * @version $Id: MotionRefValues.java,v 1.3 2006/06/29 10:47:33 ln156897 Exp $ */ public class MotionRefValues implements RefValues { /** * This RefValues Segments. They can be CompositeSegment or MotionSegment * instances. */ MotionSegment[] segments; /** * A working array to return a value from the compute method. */ float[][] w; /** * Used to store the length of this RefValues */ float length; /** * Used to store the normalized length of each segment */ float[] nSegLength; /** * Used to store the length of each segment */ float[] segLength; /** * The associated AnimateMotion */ AnimateMotion motion; /** * Builds a new MotionRefValues associated with the given AnimateMotion * instance. * * @param motion the associated AnimateMotion */ public MotionRefValues(final AnimateMotion motion) { this.motion = motion; } /** * Computes the segment index for the given normalized distance. * * @param sisp a float array where the mapped si and sp values should be * stored. * @param dist the distance for which the segment indices should be * computed. This value is normalized to the [0, 1] interval. */ public void getSegmentAtDist(float[] sisp, float dist) { if (dist >= 1) { sisp[0] = segments.length - 1; sisp[1] = 1; return; } if (dist < 0) { sisp[0] = 0; sisp[1] = 0; return; } int i = 0; float prevSegLength = 0; for (; i < nSegLength.length - 1; i++) { if (dist < nSegLength[i]) { break; } prevSegLength = nSegLength[i]; } // Now, compute the penetration in the segment. float p = 1; if (nSegLength[i] > prevSegLength) { p = (dist - prevSegLength) / (nSegLength[i] - prevSegLength); } sisp[0] = i; sisp[1] = p; } /** * @param i requested segment index. * @return Segment at index i */ public Segment getSegment(int i) { return segments[i]; } /** * @return the number of segments in refValues */ public int getSegments() { return segments.length; } /** * @return the number of components. There is an array of float for each * component. */ public int getComponents() { return segments[0].getStart().length; } /** * Computes the value for the input interpolated values. * There should be as many entries in the return array as there * are components in the RefValues. * * @param si the current segment index * @param p the current penetration * @param the interpolated value. */ public Object[] compute(int si, float p) { segments[si].compute(p, w); return w; } /** * Adds a new time segment so accomodate for discreet behavior. * If there is only one segment for discreet animations, the * last value is never shown. To accomodate for that, this * method should add a segment to the RefValues so that the * last animation value is shown during the last value interval * of a discreet animation. */ public void makeDiscrete() { MotionSegment[] tmpSegments = new MotionSegment[segments.length + 1]; System.arraycopy(segments, 0, tmpSegments, 0, segments.length); Segment lastSeg = segments[segments.length - 1]; float[][] end = (float[][]) lastSeg.getEnd(); LeafMotionSegment newSeg = new LeafMotionSegment(end[4][0], end[5][0], end[4][0], end[5][0], motion); tmpSegments[tmpSegments.length - 1] = newSeg; segments = tmpSegments; } /** * Computes the length of the RefValues. This is meant for paced timing * computation. * * @return the total length of refValues, along each component. Therefore, * there are as many entries in the returned array as there are * components in RefValues. */ public float getLength() { return length; } /** * Computes the length of segment at index si * * @param si the segment index. */ public float getLength(final int si) { return segLength[si]; } /** * Should be called after the RefValue's configuration is complete * to give the implementation a chance to initialize * internal data and cache values. */ public void initialize() { // Initialize the working buffer final int nc = segments[0].getStart().length; w = new float[nc][]; for (int ci = 0; ci < nc; ci++) { // There is one dimension per component for motion // values, which are matrix values. w[ci] = new float[1]; } // Initialize sub-segments. final int ns = segments.length; for (int si = 0; si < ns; si++) { segments[si].initialize(); } // Initialize cached length values. nSegLength = new float[ns]; segLength = new float[ns]; for (int si = 0; si < segments.length; si++) { segLength[si] = segments[si].getLength(); length += segLength[si]; } // Now, initialize the normalized segment lengths array if (length > 0) { float curLength = 0; for (int si = 0; si < ns - 1; si++) { curLength += segLength[si]; nSegLength[si] = curLength / length; } } else { for (int si = 0; si < ns - 1; si++) { nSegLength[si] = 0; } } // Make sure that, in all cases, the last value is 1. nSegLength[nSegLength.length - 1] = 1; } /** * Debug helper. */ /* public String toString() { StringBuffer sb = new StringBuffer(); sb.append("MotionRefValues[" + getSegments() + "]\n"); for (int si = 0; si < getSegments(); si++) { Segment seg = getSegment(si); sb.append("seg[" + si + "] : " + seg.toString() + "\n"); } return sb.toString(); } */ }