/* * * * Copyright 1990-2009 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License version * 2 only, as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 for more details (a copy is * included at /legal/license.txt). * * You should have received a copy of the GNU General Public License * version 2 along with this work; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa * Clara, CA 95054 or visit www.sun.com if you need additional * information or have any questions. */ package components; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import java.io.PrintWriter; import java.io.StringWriter; import java.util.Hashtable; import jcc.Const; import jcc.EVMConst; import jcc.Util; import util.DataFormatException; // Class for representing every method in a class public class MethodInfo extends ClassMemberInfo implements Const { public int argsSize; public int stack; public int locals; public int methodTableIndex = -1; public byte code[]; private Attribute methodAttributes[]; public CodeAttribute codeAttribute; public Attribute codeAttributes[]; public ExceptionEntry exceptionTable[]; public ClassConstant exceptionsThrown[]; private boolean checkedDebugTables = false; private LineNumberTableEntry lineNumberTable[]; private LocalVariableTableEntry localVariableTable[]; public StackMapFrame stackMapTable[]; public vm.VMMethodInfo vmMethodInfo; /* An array of the methods called by invokevirtual_quick and * invokevirtualobject_quick. (After quickening, before inlining). */ public MethodInfo[] targetMethods; /** * The following are arrays of indexes into the * code array of references to the constant pool: * ldcInstructions lists the instructions with a one-byte index. * wideConstantRefInstructions lists the instructions with a two-byte index. * In each case, the index is that of the opcode: the actual reference * begins with the following byte. * Entries of value -1 are ignored. */ public int ldcInstructions[]; public int wideConstantRefInstructions[]; public MethodInfo( int name, int sig, int access, ClassInfo p ) { super( name, sig, access, p ); } public void initializeClassDebugTables() { int nattr = (codeAttributes == null) ? 0 : codeAttributes.length; // parse code attributes for (int i = 0; i < nattr; i++) { Attribute a = codeAttributes[i]; if (a.name.string.equals("LineNumberTable")) { lineNumberTable = ((LineNumberTableAttribute)a).data; } if (a.name.string.equals("LocalVariableTable")) { localVariableTable = ((LocalVariableTableAttribute)a).data; } if (a.name.string.equals("StackMap")) { stackMapTable = ((StackMapAttribute)a).data; } } } public LineNumberTableEntry [] getLineNumberTable(){ if ( !checkedDebugTables ){ initializeClassDebugTables(); checkedDebugTables = true; } return lineNumberTable; } public LocalVariableTableEntry [] getLocalVariableTable(){ if ( !checkedDebugTables ){ initializeClassDebugTables(); checkedDebugTables = true; } return localVariableTable; } public boolean hasLineNumberTable(){ if ( !checkedDebugTables ){ initializeClassDebugTables(); checkedDebugTables = true; } return (lineNumberTable != null) && (lineNumberTable.length != 0); } public boolean hasLocalVariableTable(){ if ( !checkedDebugTables ){ initializeClassDebugTables(); checkedDebugTables = true; } return (localVariableTable != null) && (localVariableTable.length != 0); } public boolean throwsExceptions(){ return exceptionsThrown != null; } public ClassConstant[] getExceptionsThrown(){ return exceptionsThrown; } public int nExceptionsThrown(){ return ( exceptionsThrown == null ) ? 0 : exceptionsThrown.length; } private String nativeName; public String getNativeName(boolean isJNI) { if (nativeName == null) { nativeName = isJNI ? getJNIName() : getOldNativeName(); } return nativeName; } public String getJNIReturnType() { return Util.parseReturnType(this.type.string); } private String getJNIName() { ClassInfo ci = parent; String classname = ci.className; String methodname = this.name.string; int nmethods = ci.methods.length; String typeName = null; // by default, don't need type for (int j = 0; j < nmethods; j ++ ){ MethodInfo m = ci.methods[j]; if ((m != this) && ( (m.access&Const.ACC_NATIVE) != 0 )) { if (m.name.equals(this.name)) { // Two native methods with the same name. Need type name typeName = this.type.string; break; } } } return Util.convertToJNIName(classname, methodname, typeName); } private String getOldNativeName() { ClassInfo ci = parent; String methodname = this.name.string; StringBuffer sbuf = new StringBuffer(/*NOI18N*/"Java_") .append(ci.getGenericNativeName()) .append('_'); if (methodname.indexOf('_') == -1) { // optimization. Most methods don't have an _ in them sbuf.append(methodname); } else { for (int i = 0; i < methodname.length(); i++) { if (methodname.charAt(i) == '_') { sbuf.append(/*NOI18N*/"_0005f"); } else { sbuf.append(methodname.charAt(i)); } } } sbuf.append("_stub"); return sbuf.toString(); } /* * A methods attributes are Code and Exceptions. */ private static Hashtable methodAttributeTypes = new Hashtable(); static { methodAttributeTypes.put( "Code", CodeAttributeFactory.instance ); methodAttributeTypes.put( "Exceptions", ExceptionsAttributeFactory.instance ); } // Read in method attributes from classfile void readAttributes( DataInput in, ConstantObject locals[], ConstantObject globals[], boolean readCode ) throws IOException { methodAttributes = Attribute.readAttributes( in, locals, globals, methodAttributeTypes, false ); // oops, we read the code. // we'll fix this someday. // // parse special attributes // if ( methodAttributes != null ){ for ( int i = 0; i < methodAttributes.length; i ++ ){ Attribute a = methodAttributes[i]; if (a.name.string.equals("Code") ) { CodeAttribute ca = (CodeAttribute)a; this.locals = ca.locals; this.stack = ca.stack; this.code = ca.code; this.exceptionTable = ca.exceptionTable; this.codeAttributes = ca.codeAttributes; this.codeAttribute = ca; } else if (a.name.string.equals("Exceptions") ) { this.exceptionsThrown = ((ExceptionsAttribute)a).data; } } } } public static MethodInfo readMethod( DataInput in, ClassInfo p, boolean readCode ) throws IOException { int access = in.readUnsignedShort(); int name = in.readUnsignedShort(); int sig = in.readUnsignedShort(); MethodInfo m = new MethodInfo( name, sig, access, p ); // the bad thing is, we really cannot go far // without resolving. So we resolve here. m.resolve( p.symbols ); m.argsSize = Util.argsSize(m.type.string); if ((m.access & ACC_STATIC) == 0) { m.argsSize++; } m.readAttributes( in, p.constants, p.symbols, readCode ); return m; } public void externalize( ConstantPool p ){ super.externalize( p ); Attribute.externalizeAttributes( methodAttributes, p ); Attribute.externalizeAttributes( codeAttributes, p ); } public void write( DataOutput o ) throws IOException{ o.writeShort( access ); o.writeShort( name.index ); o.writeShort( type.index ); Attribute.writeAttributes( methodAttributes, o, false ); } private static int getInt(byte[] code, int w) { return ( (int)code[w] << 24 ) | (( (int)code[w+1] &0xff ) << 16 ) | (( (int)code[w+2] &0xff ) << 8 ) | ( (int)code[w+3] &0xff ); } public int getInt( int w ){ return getInt(code, w); } public int getUnsignedShort( int w ){ return (( (int)code[w] &0xff ) << 8 ) | ( (int)code[w+1] &0xff ); } public int getShort( int w ){ return (( (int)code[w]) << 8 ) | ( (int)code[w+1] &0xff ); } // // Private Utility functions private void putInt(byte array[], int offset, int val) { array[offset] = (byte) ((val >> 24) & 0xFF); array[offset+1] = (byte) ((val >> 16) & 0xFF); array[offset+2] = (byte) ((val >> 8) & 0xFF); array[offset+3] = (byte) (val & 0xFF); } private void putShort( int w, short v ){ code[w] = (byte)(v>>>8); code[w+1] = (byte)v; } public void findConstantReferences() throws DataFormatException { if ( code == null ) return; // no code, no references. int ldc[] = new int[ code.length / 2 ]; int wide[] = new int[ code.length / 3 ]; int nldc = 0; int nwide = 0; int ncode = code.length; int opcode; for( int i = 0; i < ncode; /*nothing*/){ switch (opcode = (int)code[i]&0xff) { case opc_tableswitch: i = (i + 4) & ~3; int low = getInt( i+4); int high = getInt( i+8); i += (high - low + 1) * 4 + 12; break; case opc_lookupswitch: i = (i + 4) & ~3; int pairs = getInt(i+4); i += pairs * 8 + 8; break; case opc_wide: switch ((int)code[i+1]&0xff) { case opc_aload: case opc_iload: case opc_fload: case opc_lload: case opc_dload: case opc_istore: case opc_astore: case opc_fstore: case opc_lstore: case opc_dstore: case opc_ret: i += 4; break; case opc_iinc: i += 6; break; default: throw new DataFormatException( parent.className + "." + name.string + ": unknown wide " + "instruction: " + code[i+1] ); } break; case opc_ldc: ldc[nldc++] = i; i += opcLengths[opcode]; break; case opc_ldc_w: case opc_ldc2_w: case opc_getstatic: case opc_putstatic: case opc_getfield: case opc_putfield: case opc_invokevirtual: case opc_invokespecial: case opc_invokestatic: case opc_invokeinterface: case opc_new: case opc_anewarray: case opc_checkcast: case opc_instanceof: case opc_multianewarray: case opc_getstatic_fast: case opc_getstaticp_fast: case opc_getstatic2_fast: case opc_putstatic_fast: case opc_putstatic2_fast: case opc_invokevirtual_fast: case opc_invokespecial_fast: case opc_invokestatic_fast: case opc_invokeinterface_fast: case opc_new_fast: case opc_anewarray_fast: case opc_multianewarray_fast: case opc_checkcast_fast: case opc_instanceof_fast: wide[nwide++] = i; i += opcLengths[opcode]; break; default: i += opcLengths[opcode]; break; } } // not knowing any better, we allocated excess capacity. // allocate and fill appropriately-sized arrays. ldcInstructions = new int[ nldc ]; System.arraycopy( ldc, 0, ldcInstructions, 0, nldc ); ldc = null; wideConstantRefInstructions = new int[ nwide ]; System.arraycopy( wide, 0, wideConstantRefInstructions, 0, nwide ); wide = null; } private static int opcodeLength(byte[] code, int pc) { int old_pc; int opcode = (int)code[pc]&0xff; switch (opcode) { case opc_tableswitch: old_pc = pc; pc = (pc + 4) & ~3; int low = getInt(code, pc + 4); int high = getInt(code, pc + 8); pc += (high - low + 1) * 4 + 12; return pc - old_pc; case opc_lookupswitch: old_pc = pc; pc = (pc + 4) & ~3; int pairs = getInt(code, pc + 4); pc += pairs * 8 + 8; return pc - old_pc; case opc_wide: if (((int)code[pc + 1]&0xff) == opc_iinc) return 6; return 4; default: return opcLengths[opcode]; } } public int opcodeLength (int pc) { return opcodeLength(code, pc); } public void countConstantReferences( ConstantObject table[], boolean isRelocatable ){ super.countConstantReferences(); Attribute.countConstantReferences( methodAttributes, isRelocatable ); Attribute.countConstantReferences( codeAttributes, isRelocatable ); if ( code == null ) return; // no code, no relocation if ( ldcInstructions != null ){ int list[] = ldcInstructions; int n = list.length; for (int i = 0; i < n; i++){ int loc = list[i]; if ( loc==-1 ) continue; table[ (int)code[loc+1]&0xff ].incReference(); } } if ( wideConstantRefInstructions != null ){ int list[] = wideConstantRefInstructions; int n = list.length; for (int i = 0; i < n; i++){ int loc = list[i]; if ( loc==-1 ) continue; table[ getUnsignedShort(loc+1) ].incReference(); } } } public void relocateConstantReferences( ConstantObject table[] ) throws DataFormatException { if ( code == null ) return; // no code, no relocation if ( ldcInstructions != null ){ int list[] = ldcInstructions; int n = list.length; for (int i = 0; i < n; i++){ int j = list[i]+1; if ( j <= 0 ) continue; ConstantObject c = table[ (int)code[j]&0xff ]; if ( c.shared ) throw new DataFormatException("code reference to shared constant"); int v = c.index; if ( v < 0 ) throw new DataFormatException("code reference to deleted constant at "+qualifiedName()+"+"+Integer.toHexString(j)); if ( v > 255 ) throw new DataFormatException("ldc subscript out of range at "+qualifiedName()+"+"+Integer.toHexString(j)); code[j] = (byte)v; } } if ( wideConstantRefInstructions != null ){ int list[] = wideConstantRefInstructions; int n = list.length; for (int i = 0; i < n; i++){ int j = list[i]+1; if ( j <= 0 ) continue; ConstantObject c = table[ getUnsignedShort(j) ]; if ( c.shared ) throw new DataFormatException("code reference to shared constant at "+qualifiedName()+"+"+Integer.toHexString(j)); int v = c.index; if ( v < 0 ) throw new DataFormatException("code reference to deleted constant at "+qualifiedName()+"+"+Integer.toHexString(j)); putShort( j, (short)v ); } } } public void replaceCode(int start, int end) { replaceCode(start, end, new byte[0]); } public void replaceCode(int start, int end, int op1) { byte code[] = { (byte)op1 }; replaceCode(start, end, code); } public void replaceCode(int start, int end, int op1, int op2) { byte code[] = { (byte)op1, (byte)op2 }; replaceCode(start, end, code); } public void replaceCode(int start, int end, int op1, int op2, int op3) { byte code[] = { (byte)op1, (byte)op2, (byte)op3 }; replaceCode(start, end, code); } public java.util.BitSet getLabelTargets() { java.util.BitSet result = new java.util.BitSet(); int ncode = code.length; int nextpc; for(int pc = 0; pc < ncode; pc = nextpc) { nextpc = pc + opcodeLength(pc); int opcode = (int)code[pc]&0xff; switch (opcode) { case opc_tableswitch: case opc_lookupswitch: int i = (pc + 4) & ~3; int delta = (opcode == opc_tableswitch) ? 4 : 8; result.set(pc + getInt(i)); // default for (i = i + 12; i < nextpc; i += delta) result.set(pc + getInt(i)); break; case opc_jsr: result.set(pc + 3); case opc_goto: case opc_ifeq: case opc_ifge: case opc_ifgt: case opc_ifle: case opc_iflt: case opc_ifne: case opc_if_icmpeq: case opc_if_icmpne: case opc_if_icmpge: case opc_if_icmplt: case opc_if_icmpgt: case opc_if_icmple: case opc_if_acmpeq: case opc_if_acmpne: case opc_ifnull: case opc_ifnonnull: result.set(pc + getShort(pc + 1)); break; case opc_jsr_w: result.set(pc + 5); case opc_goto_w: result.set(pc + getInt(pc + 1)); break; } } return result; } public void replaceCode(int start, int end, byte[] replaceCode) { if (end - start < replaceCode.length) { // System.out.println(" Cannot yet do expansion!!"); return; } if (exceptionTable != null && exceptionTable.length > 0) { for (int i = 0; i < exceptionTable.length; i++) { int startPC = exceptionTable[i].startPC; int endPC = exceptionTable[i].endPC; if (startPC >= start && startPC < end) return; if (endPC >= start && endPC < end) return; } } int startExtra = start + replaceCode.length; int extra = end - startExtra; System.arraycopy(replaceCode, 0, code, start, replaceCode.length); for (int i = startExtra; i < end; i++) code[i] = (byte)opc_nop; } public void disassemble() { System.out.println(disassemble(code, 0, code.length)); } public String disassemble(int start, int end) { return disassemble(code, start, end); } /** * Return the byte stored at a given index from the offset * within code bytes */ private static final int at(byte codeBytes[], int index) { return codeBytes[index] & 0xFF; } /** * Return the short stored at a given index from the offset * within code bytes */ private static final int shortAt(byte codeBytes[], int index) { return ((codeBytes[index] & 0xFF) << 8) | (codeBytes[index+1] & 0xFF); } public static String disassemble(byte[] codeBytes, int start, int end) { // Output goes into a string StringWriter sw = new StringWriter(); PrintWriter output = new PrintWriter(sw); for (int offset = start; offset < end; ) { int opcode = at(codeBytes, offset); if (offset > start) output.print("; "); output.print(opcodeName(opcode)); switch (opcode) { case opc_aload: case opc_astore: case opc_fload: case opc_fstore: case opc_iload: case opc_istore: case opc_lload: case opc_lstore: case opc_dload: case opc_dstore: case opc_ret: output.print(" " + at(codeBytes, offset+1)); offset += 2; break; case opc_iinc: output.print(" " + at(codeBytes, offset+1) + " " + (byte) at(codeBytes, offset +2)); offset += 3; break; case opc_newarray: switch (at(codeBytes, offset+1)) { case T_INT: output.print(" int"); break; case T_LONG: output.print(" long"); break; case T_FLOAT: output.print(" float"); break; case T_DOUBLE: output.print(" double"); break; case T_CHAR: output.print(" char"); break; case T_SHORT: output.print(" short"); break; case T_BYTE: output.print(" byte"); break; case T_BOOLEAN:output.print(" boolean"); break; default: output.print(" BOGUS"); break; } offset += 2; break; case opc_anewarray_fast: case opc_anewarray: { int index = shortAt(codeBytes, offset+1); output.print(" class #" + index + " "); offset += 3; break; } case opc_sipush: output.print(" " + (short) shortAt(codeBytes, offset+1)); offset += 3; break; case opc_bipush: output.print(" " + (byte) at(codeBytes, offset+1)); offset += 2; break; case opc_ldc: { int index = at(codeBytes, offset+1); output.print(" #" + index + " "); offset += 2; break; } case opc_getstatic_fast: case opc_getstaticp_fast: case opc_getstatic2_fast: case opc_putstatic_fast: case opc_putstatic2_fast: case opc_unused_d5: case opc_invokevirtual_fast: case opc_invokespecial_fast: case opc_invokestatic_fast: case opc_invokeinterface_fast: case opc_new_fast: case opc_multianewarray_fast: case opc_checkcast_fast: case opc_instanceof_fast: case opc_ldc_w: case opc_ldc2_w: case opc_instanceof: case opc_checkcast: case opc_new: case opc_putstatic: case opc_getstatic: case opc_putfield: case opc_getfield: case opc_invokevirtual: case opc_invokespecial: case opc_invokestatic: { int index = shortAt(codeBytes, offset+1); output.print(" #" + index + " "); offset += 3; break; } case opc_getfield_fast: case opc_getfieldp_fast: case opc_getfield2_fast: case opc_putfield_fast: case opc_putfield2_fast: { int index = at(codeBytes, offset+1); output.print(" [" + index + "] "); offset += 3; break; } case opc_jsr: case opc_goto: case opc_ifeq: case opc_ifge: case opc_ifgt: case opc_ifle: case opc_iflt: case opc_ifne: case opc_if_icmpeq: case opc_if_icmpne: case opc_if_icmpge: case opc_if_icmpgt: case opc_if_icmple: case opc_if_icmplt: case opc_if_acmpeq: case opc_if_acmpne: case opc_ifnull: case opc_ifnonnull: { int target = offset + (short) shortAt(codeBytes,offset+1); output.print(" " + target); offset += 3; break; } default: offset += opcodeLength(codeBytes, offset); break; } } output.close(); return sw.toString(); } public static String opcodeName (int opcode) { return opcNames[opcode]; } public String toString(){ String r = "Method: "+super.toString(); if ( code != null ){ r += " {"+code.length+" bytes of code}"; } return r; } // Case 1: expand code. // Convert ldc to ldc2: a. Insert extra bytes // b. Fix all branch targets/exception ranges // Case 2: smash code // ldc_w_fast has index which is less than 255. Change to use // ldc_w. public void relocateAndPackCode (ConstantObject co[]) { if (code == null) return; int opcode, adjustment = 0; int newOffsets[] = new int[code.length]; int indexByPC[] = new int[code.length]; // First figure out where we'll have to insert extra bytes in // order to fit opc_ldc_w instead of opc_ldc instructions. for (int pc = 0, pcindex = 0; pc < code.length; pc = pc + opcodeLength(pc), pcindex++) { opcode = (int) code[pc]&0xFF; newOffsets[pcindex] = pc + adjustment; indexByPC[pc] = pcindex; /******* * switch (opcode) { * case opc_ldc: { * // a conversion table which maps pcValue to new index. * int oldindex = (int)(code[pc+1] & 0xFF); * int index = co[oldindex].index; * * if (index >= 0x100) * adjustment++; * break; * } * * * case opc_ldc_w: { * // a conversion table which maps pcValue to new index. * int oldindex = (int)(((code[pc+1]&0xFF) << 8) * | (code[pc+2]&0xFF)); * int index = co[oldindex].index; * * if (index < 0x100) * adjustment--; * break; * } * * * * case opc_goto: { * // Calculate the displacement, sign extend high byte * int displ = (code[pc+1] << 8) | (code[pc+2] & 0xFF); * * if (displ == 3) { * adjustment -= 3; // remove no-use goto's. * } * break; * } * * case opc_nop: { * adjustment--; // remove * break; * } * * * case opc_tableswitch: * case opc_lookupswitch: { * int oldExtraPC = (( pc + 4 ) & ~3); * int newExtraPC = (( pc + adjustment + 4) & ~3); * adjustment = newExtraPC - oldExtraPC; * break; * } * } *******/ } // Now copy the code to the new location. At the same // time, we adjust all branch targets. byte newCode[] = new byte[code.length + adjustment]; for (int pc = 0, pcindex = 0; pc < code.length; pc = pc + opcodeLength(pc), pcindex++) { int outPos = newOffsets[pcindex]; int inPos = pc; opcode = (int) code[pc]&0xFF; for (int i = 0; i < opcodeLength(pc); i++) { newCode[outPos + i] = code[pc + i]; } switch (opcode) { case opc_ldc: { int oldindex = (int)(code[pc+1] & 0xFF); int index = co[oldindex].index; if (index >= 0x100) { new RuntimeException("load constant overflow"); } newCode[outPos +1] = (byte) index ; break; } /**** * // Remapping branches * case opc_ifeq: * case opc_ifne: * case opc_iflt: * case opc_ifge: * case opc_ifgt: * case opc_ifle: * case opc_if_icmpeq: * case opc_if_icmpne: * case opc_if_icmplt: * case opc_if_icmpge: * case opc_if_icmpgt: * case opc_if_icmple: * case opc_if_acmpeq: * case opc_if_acmpne: * case opc_ifnull: * case opc_ifnonnull: * case opc_goto: * case opc_jsr: { * // Calculate the displacement, sign extend high byte * int displ = (code[pc+1] << 8) | (code[pc+2] & 0xFF); * * * if (displ == 3 && opcode == opc_goto) { * * break; * * } * * int branchDest = pc + displ; * * if ((code[branchDest] & 0xFF) == opc_goto) { * // We're branching to a goto. We can just branch to * // where the goto was going. * branchDest += * (code[branchDest+1] << 8) | (code[branchDest+2] & 0xFF); * } * int newDest = newOffsets[indexByPC[branchDest]] - outPos; * newCode[outPos+1] = (byte) ((newDest >> 8) & 0xFF); * newCode[outPos+2] = (byte) (newDest & 0xFF); * break; * } * * case opc_tableswitch: { * newCode[outPos] = code[pc]; * outPos = (outPos + 4) & ~3; * inPos = (inPos + 4) & ~3; * * // Update the default destination * int oldDest = getInt(inPos) + pc; * int newDest = newOffsets[indexByPC[oldDest]] * - newOffsets[pcindex]; * putInt(newCode, outPos, newDest); * * // Update each of the destinations in the table * int low = getInt(inPos+4); * int high = getInt(inPos+8); * putInt(newCode, outPos+4, low); * putInt(newCode, outPos+8, high); * for (int j = 0; j <= high-low; j++) { * int offset = j * 4 + 12; * oldDest = getInt(inPos + offset) + pc; * newDest = newOffsets[indexByPC[oldDest]] * - newOffsets[pcindex]; * putInt(newCode, outPos + offset, newDest); * } * break; * } * * case opc_lookupswitch: { * newCode[outPos] = code[pc]; * // 0-3 byte pads * outPos = (outPos + 4) & ~3; * inPos = (inPos + 4) & ~3; * * // Update the default destination * int oldDest = getInt(inPos) + pc; * int newDest = newOffsets[indexByPC[oldDest]] * - newOffsets[pcindex]; * putInt(newCode, outPos, newDest); * * // Update each of the pairs of destinations in the list * int pairs = getInt(inPos+4); * putInt(newCode, outPos+4, pairs); * for (int j = 0; j < pairs; j++) { * int offset = (j + 1) * 8; * * // First copy the value * putInt(newCode, outPos + offset, * getInt(inPos + offset)); * offset += 4; * * // Now adjust the destination * oldDest = getInt(inPos + offset) + pc; * newDest = newOffsets[indexByPC[oldDest]] * - newOffsets[pcindex]; * putInt(newCode, outPos + offset, newDest); * } * break; * } ********/ // Byte-codes with constant pool access. Remap to new indices case opc_getfield: case opc_checkcast: case opc_getstatic: case opc_instanceof: case opc_ldc2_w: case opc_new: case opc_putfield: case opc_putstatic: case opc_invokevirtual: case opc_invokestatic: case opc_invokespecial: case opc_getstatic_fast: case opc_getstaticp_fast: case opc_getstatic2_fast: case opc_putstatic_fast: case opc_putstatic2_fast: case opc_invokevirtual_fast: case opc_invokespecial_fast: case opc_invokestatic_fast: case opc_anewarray_fast: case opc_checkcast_fast: case opc_instanceof_fast: case opc_multianewarray: case opc_multianewarray_fast: case opc_invokeinterface: case opc_invokeinterface_fast: case opc_ldc_w: { int oldindex = (int)(((code[pc+1]&0xFF) << 8) | (code[pc+2]&0xFF)); int index = co[oldindex].index; newCode[outPos] = (byte) opcode; newCode[outPos+1] = (byte) ((index >> 8) & 0xFF); newCode[outPos+2] = (byte) (index & 0xFF); break; } } } // Update the exception table for (int i = 0; i < exceptionTable.length; i++) { ExceptionEntry e = exceptionTable[i]; e.startPC = newOffsets[indexByPC[e.startPC]]; e.endPC = newOffsets[indexByPC[e.endPC]]; e.handlerPC = newOffsets[indexByPC[e.handlerPC]]; } // Update the line number table LineNumberTableEntry[] lntab = getLineNumberTable(); if (lntab != null) { for (int i = 0; i < lntab.length; i++) { LineNumberTableEntry e = lntab[i]; e.startPC = newOffsets[indexByPC[e.startPC]]; } } // Update the line number table LocalVariableTableEntry[] locvartab = getLocalVariableTable(); if (locvartab != null) { for (int i = 0; i < locvartab.length; i++) { LocalVariableTableEntry e = locvartab[i]; e.pc0 = newOffsets[indexByPC[e.pc0]]; } } // Update the stack maps if (stackMapTable != null) { for (int i = 0; i < stackMapTable.length; i++) { StackMapFrame frame = stackMapTable[i]; frame.offset = newOffsets[indexByPC[frame.offset]]; } } // make the changes permanent code = newCode; } }