package edu.northwestern.at.utils.math.distributions; /* Please see the license information at the end of this file. */ import edu.northwestern.at.utils.math.*; import edu.northwestern.at.utils.math.rootfinders.*; /** Beta distribution functions. */ public class Beta { /** Log of the Beta distribution. * * @param a * @param b * * @return Log of the Beta distribution for specofied parameters. * * <p> * The log of the beta distribution is calculated from the * log of the gamma distribution using the following relationship: * </p> * * </p> * logBeta(a,b) = logGamma(a) + logGamma(b) - logGamma( a + b ) * </p> */ public static double logBeta( double a , double b ) { return Gamma.logGamma( a ) + Gamma.logGamma( b ) - Gamma.logGamma( a + b ); } /** Beta function. * * @param a * @param b * * @return Beta distribution for specified arguments. * * <p> * The beta distribution value is calculated from the * gamma distribution using the following relationship: * </p> * * </p> * Beta(a,b) = ( Gamma(a) * Gamma(b) ) / Gamma( a + b ) * </p> */ public static double beta( double a , double b ) throws ArithmeticException { double result = 1.0D; double ab = Gamma.gamma( a + b ); // If (a + b ) is zero, return 1.0 as // the value of beta. if ( ab == 0.0D ) return result; // Avoid possible overflow by multiplying // dividing gamma(max(a,b)) by // gamma(a+b) and then multiplying // by gamma(min(a,b)) . if ( a > b ) { result = Gamma.gamma( a ) / ab; result *= Gamma.gamma( b ); } else { result = Gamma.gamma( b ) / ab; result *= Gamma.gamma( a ); } return result; } /** Cumulative probability density function for the incomplete beta function. * * @param x Upper percentage point of incomplete beta * probability density function * @param alpha First shape parameter * @param beta Second shape parameter * @param dPrec Digits of precision desired (1 < dPrec < Constants.MAXPREC) * * @return Cumulative probability density function value. * * @throws IllegalArgumentException * if x <= 0 or a <= 0 or b <= 0 . * * <p> * The continued fraction expansion as given by * Abramowitz and Stegun (1964) is used. This * method works well unless the minimum of (alpha, beta) * exceeds about 70000. For most common values the result * will be accurate to about 14 decimal digits. * </p> */ public static double incompleteBeta ( double x, double alpha, double beta, int dPrec ) throws IllegalArgumentException { double epsz; double a ; double b ; double c ; double f ; double fx ; double apb ; double zm ; double alo ; double ahi ; double blo ; double bhi ; double bod ; double bev ; double zm1 ; double d1 ; double aev ; double aod ; double cPrec; double result; int nTries; int iter; int maxIter; boolean qSwap; boolean qDoit; boolean qConv; /* Initialize */ if ( dPrec > Constants.MAXPREC ) { dPrec = Constants.MAXPREC; } else if ( dPrec <= 0 ) { dPrec = 1; } cPrec = dPrec; epsz = Math.pow( 10.0D , -dPrec ); a = alpha; b = beta; qSwap = false; result = -1.0D; qDoit = true; maxIter = 200; /* Check arguments */ /* Error if: */ /* X <= 0 */ /* A <= 0 */ /* B <= 0 */ if ( x <= 0.0D ) { throw new IllegalArgumentException( "x <= 0.0" ); } if ( a <= 0.0D ) { throw new IllegalArgumentException( "a <= 0.0" ); } if ( b <= 0.0D ) { throw new IllegalArgumentException( "b <= 0.0" ); } result = 1.0D; /* If X >= 1, return 1.0 as prob */ if ( x >= 1.0D ) return result; /* If x > a / ( a + b ) then swap */ /* a, b for more efficient eval. */ if ( x > ( a / ( a + b ) ) ) { x = 1.0 - x; a = beta; b = alpha; qSwap = true; }; /* Check for extreme values */ if ( ( x == a ) || ( x == b ) ) { } else if ( a == ( ( b * x ) / ( 1.0 - x ) ) ) { } else if ( Math.abs( a - ( x * ( a + b ) ) ) <= epsz ) { } else { c = Gamma.logGamma( a + b ) + a * Math.log( x ) + b * Math.log( 1.0 - x ) - Gamma.logGamma( a ) - Gamma.logGamma( b ) - Math.log( a - x * ( a + b ) ); if ( ( c < -36.0D ) && qSwap ) return result; result = 0.0D; if ( c < -180.0D ) return result; } /* Set up continued fraction expansion */ /* evaluation. */ apb = a + b; zm = 0.0D; alo = 0.0D; bod = 1.0D; bev = 1.0D; bhi = 1.0D; blo = 1.0D; ahi = Math.exp( Gamma.logGamma( apb ) + a * Math.log( x ) + b * Math.log( 1.0D - x ) - Gamma.logGamma( a + 1.0D ) - Gamma.logGamma( b ) ); f = ahi; iter = 0; /* Continued fraction loop begins here. */ /* Evaluation continues until maximum */ /* iterations are exceeded, or */ /* convergence achieved. */ qConv = false; do { fx = f; zm1 = zm; zm = zm + 1.0D; d1 = a + zm + zm1; aev = -( a + zm1 ) * ( apb + zm1 ) * x / d1 / ( d1 - 1.0D ); aod = zm * ( b - zm ) * x / d1 / ( d1 + 1.0D ); alo = bev * ahi + aev * alo; blo = bev * bhi + aev * blo; ahi = bod * alo + aod * ahi; bhi = bod * blo + aod * bhi; if ( Math.abs( bhi ) < Double.MIN_VALUE ) bhi = 0.0D; if ( bhi != 0.0D ) { f = ahi / bhi; qConv = ( Math.abs( ( f - fx ) / f ) < epsz ); }; iter++; } while ( ( iter <= maxIter ) && ( !qConv ) ); /* Arrive here when convergence */ /* achieved, or maximum iterations */ /* exceeded. */ if ( qSwap ) { result = 1.0D - f; } else { result = f; } return result; } /** Cumulative probability density function for the incomplete beta function. * * @param x Upper percentage point of incomplete beta * probability density function * @param alpha First shape parameter * @param beta Second shape parameter * * @return Cumulative probability density function value. * * @throws IllegalArgumentException * if x <= 0 or a <= 0 or b <= 0 . * * <p> * The continued fraction expansion as given by * Abramowitz and Stegun (1964) is used. This * method works well unless the minimum of (alpha, beta) * exceeds about 70000. For most common values the result * will be accurate to about 14 decimal digits. * </p> */ public static double incompleteBeta ( double x, double alpha, double beta ) throws IllegalArgumentException { return incompleteBeta( x , alpha , beta , Constants.MAXPREC ); } /** Compute value of inverse incomplete beta distribution. * * @param p Probability value. * @param alpha First shape parameter. * @param beta Second shape parameter. * * @return Percentage point of inverse beta distribution. * * @throws IllegalArgumentException * if alpha <= 0 or beta <= 0 or p <= 0 or p >= 1 . */ public static double incompleteBetaInverse ( final double p, final double alpha, final double beta ) throws IllegalArgumentException { /* Check validity of arguments */ if ( alpha <= 0.0D ) { throw new IllegalArgumentException( "alpha<=0" ); } if ( beta <= 0.0D ) { throw new IllegalArgumentException( "beta<=0" ); } if ( ( p > 1.0D ) || ( p < 0.0D ) ) { throw new IllegalArgumentException( "p < 0 or p > 1" ); } /* Check for P = 0 or 1 */ if ( ( p == 0.0D ) || ( p == 1.0D ) ) { return 0.0D; /* this is bad */ } /* Set precision for results. */ double eps = Math.pow( 10.0D , -2 * Constants.MAXPREC ); int maxIter = 100; /* Create function for evaluating */ /* zero root. */ MonadicFunction function = new MonadicFunction() { public double f( double x ) { return p - Beta.incompleteBeta( x , alpha , beta ); } }; /* Set initial bracket for root value. */ double[] bracket = new double[]{ eps , 1.0D - eps }; /* Make sure bracket contains value. */ if ( BracketRoot.bracketRoot( bracket, function, maxIter, 1.6D ) ) { /* Use Brent's method to search for */ /* root using incomplete beta CDF function. */ return Brent.brent ( bracket[ 0 ], bracket[ 1 ], eps, maxIter, function ); } else { throw new ArithmeticException( "Unable to bracket value" ); } } /** Make class non-instantiable but inheritable. */ protected Beta() { } } /* Copyright (c) 2008, 2009 by Northwestern University. All rights reserved. Developed by: Academic and Research Technologies Northwestern University http://www.it.northwestern.edu/about/departments/at/ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal with the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimers. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimers in the documentation and/or other materials provided with the distribution. * Neither the names of Academic and Research Technologies, Northwestern University, nor the names of its contributors may be used to endorse or promote products derived from this Software without specific prior written permission. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE SOFTWARE. */