// License: GPL. For details, see LICENSE file. package org.openstreetmap.josm.data.projection.proj; import static org.openstreetmap.josm.tools.I18n.tr; import org.openstreetmap.josm.data.Bounds; import org.openstreetmap.josm.data.projection.ProjectionConfigurationException; /** * Mercator Cylindrical Projection. The parallels and the meridians are straight lines and * cross at right angles; this projection thus produces rectangular charts. The scale is true * along the equator (by default) or along two parallels equidistant of the equator (if a scale * factor other than 1 is used). This projection is used to represent areas close to the equator. * It is also often used for maritime navigation because all the straight lines on the chart are * <em>loxodrome</em> lines, i.e. a ship following this line would keep a constant azimuth on its * compass. * <p> * This implementation handles both the 1 and 2 stardard parallel cases. * For 1 SP (EPSG code 9804), the line of contact is the equator. * For 2 SP (EPSG code 9805) lines of contact are symmetrical * about the equator. * <p> * This class has been derived from the implementation of the Geotools project; * git 8cbf52d, org.geotools.referencing.operation.projection.Mercator * at the time of migration. * <p> * <b>References:</b> * <ul> * <li>John P. Snyder (Map Projections - A Working Manual,<br> * U.S. Geological Survey Professional Paper 1395, 1987)</li> * <li>"Coordinate Conversions and Transformations including Formulas",<br> * EPSG Guidence Note Number 7, Version 19.</li> * </ul> * * @author André Gosselin * @author Martin Desruisseaux (PMO, IRD) * @author Rueben Schulz * @author Simone Giannecchini * * @see <A HREF="http://mathworld.wolfram.com/MercatorProjection.html">Mercator projection on MathWorld</A> * @see <A HREF="http://www.remotesensing.org/geotiff/proj_list/mercator_1sp.html">"mercator_1sp" on RemoteSensing.org</A> * @see <A HREF="http://www.remotesensing.org/geotiff/proj_list/mercator_2sp.html">"mercator_2sp" on RemoteSensing.org</A> */ public class Mercator extends AbstractProj implements IScaleFactorProvider { /** * Maximum difference allowed when comparing real numbers. */ private static final double EPSILON = 1E-6; protected double scaleFactor; @Override public String getName() { return tr("Mercator"); } @Override public String getProj4Id() { return "merc"; } @Override public void initialize(ProjParameters params) throws ProjectionConfigurationException { super.initialize(params); scaleFactor = 1; if (params.lat_ts != null) { /* * scaleFactor is not a parameter in the 2 SP case and is computed from * the standard parallel. */ double standardParallel = Math.toRadians(params.lat_ts); if (spherical) { scaleFactor *= Math.cos(standardParallel); } else { scaleFactor *= msfn(Math.sin(standardParallel), Math.cos(standardParallel)); } } /* * A correction that allows us to employs a latitude of origin that is not * correspondent to the equator. See Snyder and al. for reference, page 47. */ if (params.lat0 != null) { final double lat0 = Math.toRadians(params.lat0); final double sinPhi = Math.sin(lat0); scaleFactor *= (Math.cos(lat0) / (Math.sqrt(1 - e2 * sinPhi * sinPhi))); } } @Override public double[] project(double y, double x) { if (Math.abs(y) > (Math.PI/2 - EPSILON)) { return new double[] {0, 0}; // this is an error and should be handled somehow } if (spherical) { y = Math.log(Math.tan(Math.PI/4 + 0.5*y)); } else { y = -Math.log(tsfn(y, Math.sin(y))); } return new double[] {x, y}; } @Override public double[] invproject(double x, double y) { if (spherical) { y = Math.PI/2 - 2.0*Math.atan(Math.exp(-y)); } else { y = Math.exp(-y); y = cphi2(y); } return new double[] {y, x}; } @Override public Bounds getAlgorithmBounds() { return new Bounds(-89, -180, 89, 180, false); } @Override public double getScaleFactor() { return scaleFactor; } @Override public boolean lonIsLinearToEast() { return true; } }