// Viennet2.java // // Author: // Antonio J. Nebro <antonio@lcc.uma.es> // Juan J. Durillo <durillo@lcc.uma.es> // // Copyright (c) 2011 Antonio J. Nebro, Juan J. Durillo // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. package org.uma.jmetal.problem.multiobjective; import org.uma.jmetal.problem.impl.AbstractDoubleProblem; import org.uma.jmetal.solution.DoubleSolution; import java.util.ArrayList; import java.util.List; /** * Class representing problem Viennet2 */ @SuppressWarnings("serial") public class Viennet2 extends AbstractDoubleProblem { /** * Constructor. * Creates a default instance of the Viennet2 problem */ public Viennet2() { setNumberOfVariables(2); setNumberOfObjectives(3); setNumberOfConstraints(0); setName("Viennet2") ; List<Double> lowerLimit = new ArrayList<>(getNumberOfVariables()) ; List<Double> upperLimit = new ArrayList<>(getNumberOfVariables()) ; for (int i = 0; i < getNumberOfVariables(); i++) { lowerLimit.add(-4.0); upperLimit.add(4.0); } setLowerLimit(lowerLimit); setUpperLimit(upperLimit); } /** Evaluate() method */ @Override public void evaluate(DoubleSolution solution) { int numberOfVariables = getNumberOfVariables() ; double[] f = new double[getNumberOfObjectives()]; double[] x = new double[numberOfVariables] ; for (int i = 0; i < numberOfVariables; i++) { x[i] = solution.getVariableValue(i) ; } // First function f[0] = (x[0]-2)*(x[0]-2)/2.0 + (x[1]+1)*(x[1]+1)/13.0 + 3.0 ; // Second function f[1] = (x[0]+x[1]-3.0)*(x[0]+x[1]-3.0)/36.0 + (-x[0]+x[1]+2.0)*(-x[0]+x[1]+2.0)/8.0 - 17.0; // Third function f[2] = (x[0]+2*x[1]-1)*(x[0]+2*x[1]-1)/175.0 + (2*x[1]-x[0])*(2*x[1]-x[0])/17.0 - 13.0 ; for (int i = 0; i < getNumberOfObjectives(); i++) solution.setObjective(i,f[i]); } }