// Viennet2.java
//
// Author:
// Antonio J. Nebro <antonio@lcc.uma.es>
// Juan J. Durillo <durillo@lcc.uma.es>
//
// Copyright (c) 2011 Antonio J. Nebro, Juan J. Durillo
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package org.uma.jmetal.problem.multiobjective;
import org.uma.jmetal.problem.impl.AbstractDoubleProblem;
import org.uma.jmetal.solution.DoubleSolution;
import java.util.ArrayList;
import java.util.List;
/**
* Class representing problem Viennet2
*/
@SuppressWarnings("serial")
public class Viennet2 extends AbstractDoubleProblem {
/**
* Constructor.
* Creates a default instance of the Viennet2 problem
*/
public Viennet2() {
setNumberOfVariables(2);
setNumberOfObjectives(3);
setNumberOfConstraints(0);
setName("Viennet2") ;
List<Double> lowerLimit = new ArrayList<>(getNumberOfVariables()) ;
List<Double> upperLimit = new ArrayList<>(getNumberOfVariables()) ;
for (int i = 0; i < getNumberOfVariables(); i++) {
lowerLimit.add(-4.0);
upperLimit.add(4.0);
}
setLowerLimit(lowerLimit);
setUpperLimit(upperLimit);
}
/** Evaluate() method */
@Override
public void evaluate(DoubleSolution solution) {
int numberOfVariables = getNumberOfVariables() ;
double[] f = new double[getNumberOfObjectives()];
double[] x = new double[numberOfVariables] ;
for (int i = 0; i < numberOfVariables; i++) {
x[i] = solution.getVariableValue(i) ;
}
// First function
f[0] = (x[0]-2)*(x[0]-2)/2.0 + (x[1]+1)*(x[1]+1)/13.0 + 3.0 ;
// Second function
f[1] = (x[0]+x[1]-3.0)*(x[0]+x[1]-3.0)/36.0 +
(-x[0]+x[1]+2.0)*(-x[0]+x[1]+2.0)/8.0 - 17.0;
// Third function
f[2] = (x[0]+2*x[1]-1)*(x[0]+2*x[1]-1)/175.0 +
(2*x[1]-x[0])*(2*x[1]-x[0])/17.0 - 13.0 ;
for (int i = 0; i < getNumberOfObjectives(); i++)
solution.setObjective(i,f[i]);
}
}