// This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. package org.uma.jmetal.experiment; import org.uma.jmetal.algorithm.Algorithm; import org.uma.jmetal.algorithm.multiobjective.nsgaii.NSGAIIBuilder; import org.uma.jmetal.operator.impl.crossover.SBXCrossover; import org.uma.jmetal.operator.impl.mutation.PolynomialMutation; import org.uma.jmetal.problem.Problem; import org.uma.jmetal.problem.multiobjective.zdt.*; import org.uma.jmetal.qualityindicator.impl.*; import org.uma.jmetal.qualityindicator.impl.hypervolume.PISAHypervolume; import org.uma.jmetal.solution.DoubleSolution; import org.uma.jmetal.util.JMetalException; import org.uma.jmetal.util.experiment.Experiment; import org.uma.jmetal.util.experiment.ExperimentBuilder; import org.uma.jmetal.util.experiment.component.*; import org.uma.jmetal.util.experiment.util.ExperimentAlgorithm; import org.uma.jmetal.util.experiment.util.ExperimentProblem; import java.io.IOException; import java.util.ArrayList; import java.util.Arrays; import java.util.List; /** * Example of experimental study based on solving the ZDT problems with four versions of NSGA-II, each * of them applying a different crossover probability (from 0.7 to 1.0). * * This experiment assumes that the reference Pareto front are not known, so the names of files containing * them and the directory where they are located must be specified. * * Six quality indicators are used for performance assessment. * * The steps to carry out the experiment are: * 1. Configure the experiment * 2. Execute the algorithms * 3. Generate the reference Pareto fronts * 4. Compute the quality indicators * 5. Generate Latex tables reporting means and medians * 6. Generate Latex tables with the result of applying the Wilcoxon Rank Sum Test * 7. Generate Latex tables with the ranking obtained by applying the Friedman test * 8. Generate R scripts to obtain boxplots * * @author Antonio J. Nebro <antonio@lcc.uma.es> */ public class NSGAIIStudy2 { private static final int INDEPENDENT_RUNS = 25 ; public static void main(String[] args) throws IOException { if (args.length != 1) { throw new JMetalException("Needed arguments: experimentBaseDirectory") ; } String experimentBaseDirectory = args[0] ; List<ExperimentProblem<DoubleSolution>> problemList = new ArrayList<>(); problemList.add(new ExperimentProblem<>(new ZDT1())); problemList.add(new ExperimentProblem<>(new ZDT2())); problemList.add(new ExperimentProblem<>(new ZDT3())); problemList.add(new ExperimentProblem<>(new ZDT4())); problemList.add(new ExperimentProblem<>(new ZDT6())); List<ExperimentAlgorithm<DoubleSolution, List<DoubleSolution>>> algorithmList = configureAlgorithmList(problemList); Experiment<DoubleSolution, List<DoubleSolution>> experiment = new ExperimentBuilder<DoubleSolution, List<DoubleSolution>>("NSGAIIStudy2") .setAlgorithmList(algorithmList) .setProblemList(problemList) .setExperimentBaseDirectory(experimentBaseDirectory) .setOutputParetoFrontFileName("FUN") .setOutputParetoSetFileName("VAR") .setReferenceFrontDirectory(experimentBaseDirectory+"/referenceFronts") .setIndicatorList(Arrays.asList( new Epsilon<DoubleSolution>(), new Spread<DoubleSolution>(), new GenerationalDistance<DoubleSolution>(), new PISAHypervolume<DoubleSolution>(), new InvertedGenerationalDistance<DoubleSolution>(), new InvertedGenerationalDistancePlus<DoubleSolution>())) .setIndependentRuns(INDEPENDENT_RUNS) .setNumberOfCores(8) .build(); new ExecuteAlgorithms<>(experiment).run(); new GenerateReferenceParetoSetAndFrontFromDoubleSolutions(experiment).run(); new ComputeQualityIndicators<>(experiment).run() ; new GenerateLatexTablesWithStatistics(experiment).run() ; new GenerateWilcoxonTestTablesWithR<>(experiment).run() ; new GenerateFriedmanTestTables<>(experiment).run(); new GenerateBoxplotsWithR<>(experiment).setRows(3).setColumns(3).run() ; } /** * The algorithm list is composed of pairs {@link Algorithm} + {@link Problem} which form part of * a {@link ExperimentAlgorithm}, which is a decorator for class {@link Algorithm}. The {@link * ExperimentAlgorithm} has an optional tag component, that can be set as it is shown in this example, * where four variants of a same algorithm are defined. */ static List<ExperimentAlgorithm<DoubleSolution, List<DoubleSolution>>> configureAlgorithmList( List<ExperimentProblem<DoubleSolution>> problemList) { List<ExperimentAlgorithm<DoubleSolution, List<DoubleSolution>>> algorithms = new ArrayList<>(); for (int i = 0; i < problemList.size(); i++) { Algorithm<List<DoubleSolution>> algorithm = new NSGAIIBuilder<>( problemList.get(i).getProblem(), new SBXCrossover(1.0, 5), new PolynomialMutation(1.0 / problemList.get(i).getProblem().getNumberOfVariables(), 10.0)) .setMaxEvaluations(25000) .setPopulationSize(100) .build(); algorithms.add(new ExperimentAlgorithm<>(algorithm, "NSGAIIa", problemList.get(i).getTag())); } for (int i = 0; i < problemList.size(); i++) { Algorithm<List<DoubleSolution>> algorithm = new NSGAIIBuilder<>( problemList.get(i).getProblem(), new SBXCrossover(1.0, 20.0), new PolynomialMutation(1.0 / problemList.get(i).getProblem().getNumberOfVariables(), 20.0)) .setMaxEvaluations(25000) .setPopulationSize(100) .build(); algorithms.add(new ExperimentAlgorithm<>(algorithm, "NSGAIIb", problemList.get(i).getTag())); } for (int i = 0; i < problemList.size(); i++) { Algorithm<List<DoubleSolution>> algorithm = new NSGAIIBuilder<>(problemList.get(i).getProblem(), new SBXCrossover(1.0, 40.0), new PolynomialMutation(1.0 / problemList.get(i).getProblem().getNumberOfVariables(), 40.0)) .setMaxEvaluations(25000) .setPopulationSize(100) .build(); algorithms.add(new ExperimentAlgorithm<>(algorithm, "NSGAIIc", problemList.get(i).getTag())); } for (int i = 0; i < problemList.size(); i++) { Algorithm<List<DoubleSolution>> algorithm = new NSGAIIBuilder<>(problemList.get(i).getProblem(), new SBXCrossover(1.0, 80.0), new PolynomialMutation(1.0 / problemList.get(i).getProblem().getNumberOfVariables(), 80.0)) .setMaxEvaluations(25000) .setPopulationSize(100) .build(); algorithms.add(new ExperimentAlgorithm<>(algorithm, "NSGAIId", problemList.get(i).getTag())); } return algorithms; } }