// This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. package org.uma.jmetal.experiment; import org.uma.jmetal.algorithm.Algorithm; import org.uma.jmetal.algorithm.multiobjective.nsgaii.NSGAIIBuilder; import org.uma.jmetal.algorithm.multiobjective.smpso.SMPSOBuilder; import org.uma.jmetal.algorithm.multiobjective.spea2.SPEA2Builder; import org.uma.jmetal.operator.impl.crossover.SBXCrossover; import org.uma.jmetal.operator.impl.mutation.PolynomialMutation; import org.uma.jmetal.problem.DoubleProblem; import org.uma.jmetal.problem.Problem; import org.uma.jmetal.problem.multiobjective.zdt.ZDT1; import org.uma.jmetal.qualityindicator.impl.Epsilon; import org.uma.jmetal.qualityindicator.impl.GenerationalDistance; import org.uma.jmetal.qualityindicator.impl.InvertedGenerationalDistance; import org.uma.jmetal.qualityindicator.impl.InvertedGenerationalDistancePlus; import org.uma.jmetal.qualityindicator.impl.Spread; import org.uma.jmetal.qualityindicator.impl.hypervolume.PISAHypervolume; import org.uma.jmetal.solution.DoubleSolution; import org.uma.jmetal.util.JMetalException; import org.uma.jmetal.util.archive.impl.CrowdingDistanceArchive; import org.uma.jmetal.util.evaluator.impl.SequentialSolutionListEvaluator; import org.uma.jmetal.util.experiment.Experiment; import org.uma.jmetal.util.experiment.ExperimentBuilder; import org.uma.jmetal.util.experiment.component.ComputeQualityIndicators; import org.uma.jmetal.util.experiment.component.ExecuteAlgorithms; import org.uma.jmetal.util.experiment.component.GenerateBoxplotsWithR; import org.uma.jmetal.util.experiment.component.GenerateFriedmanTestTables; import org.uma.jmetal.util.experiment.component.GenerateLatexTablesWithStatistics; import org.uma.jmetal.util.experiment.component.GenerateWilcoxonTestTablesWithR; import org.uma.jmetal.util.experiment.util.ExperimentAlgorithm; import org.uma.jmetal.util.experiment.util.ExperimentProblem; import java.io.IOException; import java.util.ArrayList; import java.util.Arrays; import java.util.List; /** * Example of experimental study based on solving the ZDT1 problem but using five different * number of variables. This can be interesting to study the behaviour of the algorithms when solving * an scalable problem (in the number of variables). The used algorithms are NSGA-II, SPEA2 and * SMPSO. * * This experiment assumes that the reference Pareto front is of problem ZDT1 is known, * so the name of file containing it and the directory where it are located must be specified. Note * that the name of the file must be replicated to be equal to the number of problem variants. * * Six quality indicators are used for performance assessment. * * The steps to carry out the experiment are: 1. Configure the experiment 2. Execute the algorithms * 3. Generate the reference Pareto fronts 4. Compute the quality indicators 5. Generate Latex * tables reporting means and medians 6. Generate Latex tables with the result of applying the * Wilcoxon Rank Sum Test 7. Generate Latex tables with the ranking obtained by applying the * Friedman test 8. Generate R scripts to obtain boxplots * * @author Antonio J. Nebro <antonio@lcc.uma.es> */ public class ZDTScalabilityIStudy { private static final int INDEPENDENT_RUNS = 25; public static void main(String[] args) throws IOException { if (args.length != 1) { throw new JMetalException("Needed arguments: experimentBaseDirectory"); } String experimentBaseDirectory = args[0]; List<ExperimentProblem<DoubleSolution>> problemList = new ArrayList<>(); problemList.add(new ExperimentProblem<>(new ZDT1(10), "ZDT110")); problemList.add(new ExperimentProblem<>(new ZDT1(20), "ZDT120")); problemList.add(new ExperimentProblem<>(new ZDT1(30), "ZDT130")); problemList.add(new ExperimentProblem<>(new ZDT1(40), "ZDT140")); problemList.add(new ExperimentProblem<>(new ZDT1(50), "ZDT150")); List<ExperimentAlgorithm<DoubleSolution, List<DoubleSolution>>> algorithmList = configureAlgorithmList(problemList); List<String> referenceFrontFileNames = Arrays.asList("ZDT1.pf", "ZDT1.pf", "ZDT1.pf", "ZDT1.pf", "ZDT1.pf"); Experiment<DoubleSolution, List<DoubleSolution>> experiment = new ExperimentBuilder<DoubleSolution, List<DoubleSolution>>("ZDTScalabilityStudy") .setAlgorithmList(algorithmList) .setProblemList(problemList) .setExperimentBaseDirectory(experimentBaseDirectory) .setOutputParetoFrontFileName("FUN") .setOutputParetoSetFileName("VAR") .setReferenceFrontDirectory("/pareto_fronts") .setReferenceFrontFileNames(referenceFrontFileNames) .setIndicatorList(Arrays.asList( new Epsilon<DoubleSolution>(), new Spread<DoubleSolution>(), new GenerationalDistance<DoubleSolution>(), new PISAHypervolume<DoubleSolution>(), new InvertedGenerationalDistance<DoubleSolution>(), new InvertedGenerationalDistancePlus<DoubleSolution>())) .setIndependentRuns(INDEPENDENT_RUNS) .setNumberOfCores(8) .build(); new ExecuteAlgorithms<>(experiment).run(); new ComputeQualityIndicators<>(experiment).run(); new GenerateLatexTablesWithStatistics(experiment).run(); new GenerateWilcoxonTestTablesWithR<>(experiment).run(); new GenerateFriedmanTestTables<>(experiment).run(); new GenerateBoxplotsWithR<>(experiment).setRows(3).setColumns(3).run(); } /** * The algorithm list is composed of pairs {@link Algorithm} + {@link Problem} which form part of * a {@link ExperimentAlgorithm}, which is a decorator for class {@link Algorithm}. The {@link * ExperimentAlgorithm} has an optional tag component, that can be set as it is shown in this example, * where four variants of a same algorithm are defined. */ static List<ExperimentAlgorithm<DoubleSolution, List<DoubleSolution>>> configureAlgorithmList( List<ExperimentProblem<DoubleSolution>> problemList) { List<ExperimentAlgorithm<DoubleSolution, List<DoubleSolution>>> algorithms = new ArrayList<>(); for (int i = 0; i < problemList.size(); i++) { double mutationProbability = 1.0 / problemList.get(i).getProblem().getNumberOfVariables(); double mutationDistributionIndex = 20.0; Algorithm<List<DoubleSolution>> algorithm = new SMPSOBuilder((DoubleProblem) problemList.get(i).getProblem(), new CrowdingDistanceArchive<DoubleSolution>(100)) .setMutation(new PolynomialMutation(mutationProbability, mutationDistributionIndex)) .setMaxIterations(250) .setSwarmSize(100) .setSolutionListEvaluator(new SequentialSolutionListEvaluator<DoubleSolution>()) .build(); algorithms.add(new ExperimentAlgorithm<>(algorithm, problemList.get(i).getTag())); } for (int i = 0; i < problemList.size(); i++) { Algorithm<List<DoubleSolution>> algorithm = new NSGAIIBuilder<DoubleSolution>( problemList.get(i).getProblem(), new SBXCrossover(1.0, 20.0), new PolynomialMutation(1.0 / problemList.get(i).getProblem().getNumberOfVariables(), 20.0)) .build(); algorithms.add(new ExperimentAlgorithm<>(algorithm, problemList.get(i).getTag())); } for (int i = 0; i < problemList.size(); i++) { Algorithm<List<DoubleSolution>> algorithm = new SPEA2Builder<DoubleSolution>( problemList.get(i).getProblem(), new SBXCrossover(1.0, 10.0), new PolynomialMutation(1.0 / problemList.get(i).getProblem().getNumberOfVariables(), 20.0)) .build(); algorithms.add(new ExperimentAlgorithm<>(algorithm, problemList.get(i).getTag())); } return algorithms ; } }