/******************************************************************************* * Copyright (c) 2000, 2011 IBM Corporation and others. * All rights reserved. This program and the accompanying materials * are made available under the terms of the Eclipse Public License v1.0 * which accompanies this distribution, and is available at * http://www.eclipse.org/legal/epl-v10.html * * Contributors: * IBM Corporation - initial API and implementation *******************************************************************************/ package org.eclipse.wst.jsdt.internal.compiler.ast; import org.eclipse.wst.jsdt.core.ast.IASTNode; import org.eclipse.wst.jsdt.core.ast.IAllocationExpression; import org.eclipse.wst.jsdt.core.ast.IExpression; import org.eclipse.wst.jsdt.internal.compiler.ASTVisitor; import org.eclipse.wst.jsdt.internal.compiler.flow.FlowContext; import org.eclipse.wst.jsdt.internal.compiler.flow.FlowInfo; import org.eclipse.wst.jsdt.internal.compiler.impl.Constant; import org.eclipse.wst.jsdt.internal.compiler.lookup.Binding; import org.eclipse.wst.jsdt.internal.compiler.lookup.BlockScope; import org.eclipse.wst.jsdt.internal.compiler.lookup.InvocationSite; import org.eclipse.wst.jsdt.internal.compiler.lookup.LocalTypeBinding; import org.eclipse.wst.jsdt.internal.compiler.lookup.MethodBinding; import org.eclipse.wst.jsdt.internal.compiler.lookup.ProblemMethodBinding; import org.eclipse.wst.jsdt.internal.compiler.lookup.ProblemReasons; import org.eclipse.wst.jsdt.internal.compiler.lookup.ProblemReferenceBinding; import org.eclipse.wst.jsdt.internal.compiler.lookup.ReferenceBinding; import org.eclipse.wst.jsdt.internal.compiler.lookup.TypeBinding; import org.eclipse.wst.jsdt.internal.compiler.lookup.TypeConstants; public class AllocationExpression extends Expression implements InvocationSite, IAllocationExpression { public TypeReference type; public Expression[] arguments; public MethodBinding binding; // exact binding resulting from lookup protected MethodBinding codegenBinding; // actual binding used for code generation (if no synthetic accessor) public Expression member; public boolean isShort; public FlowInfo analyseCode(BlockScope currentScope, FlowContext flowContext, FlowInfo flowInfo) { if (this.member!=null) flowInfo = this.member .analyseCode(currentScope, flowContext, flowInfo) .unconditionalInits(); // process arguments if (arguments != null) { for (int i = 0, count = arguments.length; i < count; i++) { flowInfo = arguments[i] .analyseCode(currentScope, flowContext, flowInfo) .unconditionalInits(); } } return flowInfo; } public Expression enclosingInstance() { return null; } public boolean isSuperAccess() { return false; } public boolean isTypeAccess() { return true; } /* Inner emulation consists in either recording a dependency * link only, or performing one level of propagation. * * Dependency mechanism is used whenever dealing with source target * types, since by the time we reach them, we might not yet know their * exact need. */ public void manageEnclosingInstanceAccessIfNecessary(BlockScope currentScope, FlowInfo flowInfo) { if ((flowInfo.tagBits & FlowInfo.UNREACHABLE) != 0) return; ReferenceBinding allocatedTypeErasure = binding.declaringClass; // perform some emulation work in case there is some and we are inside a local type only if (allocatedTypeErasure.isNestedType() && currentScope.enclosingSourceType().isLocalType()) { if (allocatedTypeErasure.isLocalType()) { ((LocalTypeBinding) allocatedTypeErasure).addInnerEmulationDependent(currentScope, false); // request cascade of accesses } } } public StringBuffer printExpression(int indent, StringBuffer output) { output.append("new "); //$NON-NLS-1$ member.print(indent, output); if (type != null) { // type null for enum constant initializations type.printExpression(0, output); } if (!isShort) { output.append('('); if (arguments != null) { for (int i = 0; i < arguments.length; i++) { if (i > 0) output.append(", "); //$NON-NLS-1$ arguments[i].printExpression(0, output); } } output.append(')'); } return output; } public TypeBinding resolveType(BlockScope scope) { // Propagate the type checking to the arguments, and check if the constructor is defined. constant = Constant.NotAConstant; if (this.member!=null) { this.resolvedType=this.member.resolveForAllocation(scope, this); if (this.resolvedType!=null && !this.resolvedType.isValidBinding()) { scope.problemReporter().invalidType(this, this.resolvedType); } } else if (this.type == null) { // initialization of an enum constant this.resolvedType = scope.enclosingReceiverType(); } else { this.resolvedType = this.type.resolveType(scope, true /* check bounds*/); } // will check for null after args are resolved // buffering the arguments' types boolean argsContainCast = false; TypeBinding[] argumentTypes = Binding.NO_PARAMETERS; if (arguments != null) { boolean argHasError = false; int length = arguments.length; argumentTypes = new TypeBinding[length]; for (int i = 0; i < length; i++) { Expression argument = this.arguments[i]; if ((argumentTypes[i] = argument.resolveType(scope)) == null) { argHasError = true; argumentTypes[i]=TypeBinding.UNKNOWN; } } } if (this.resolvedType == null || this.resolvedType.isAnyType()|| this.resolvedType instanceof ProblemReferenceBinding) { this.binding= new ProblemMethodBinding( TypeConstants.INIT, Binding.NO_PARAMETERS, ProblemReasons.NotFound); this.resolvedType=TypeBinding.UNKNOWN; return this.resolvedType; } if (!this.resolvedType.isValidBinding()) return null; if (this.resolvedType instanceof ReferenceBinding ) { ReferenceBinding allocationType = (ReferenceBinding) this.resolvedType; if (!(binding = scope.getConstructor(allocationType, argumentTypes, this)).isValidBinding()) { if (binding.declaringClass == null) binding.declaringClass = allocationType; scope.problemReporter().invalidConstructor(this, binding); return this.resolvedType; } if (argumentTypes.length!=binding.parameters.length) scope.problemReporter().wrongNumberOfArguments(this, binding); if (isMethodUseDeprecated(binding, scope, true)) scope.problemReporter().deprecatedMethod(binding, this); checkInvocationArguments(scope, null, allocationType, this.binding, this.arguments, argumentTypes, argsContainCast, this); } return this.resolvedType; } public void setActualReceiverType(ReferenceBinding receiverType) { // ignored } public void setDepth(int i) { // ignored } public void setFieldIndex(int i) { // ignored } public void traverse(ASTVisitor visitor, BlockScope scope) { if (visitor.visit(this, scope)) { if (this.member!=null) this.member.traverse(visitor, scope); else if (this.type != null) { // enum constant scenario this.type.traverse(visitor, scope); } if (this.arguments != null) { for (int i = 0, argumentsLength = this.arguments.length; i < argumentsLength; i++) this.arguments[i].traverse(visitor, scope); } } visitor.endVisit(this, scope); } public int getASTType() { return IASTNode.ALLOCATION_EXPRESSION; } public IExpression getMember() { return this.member; } /** * @see org.eclipse.wst.jsdt.internal.compiler.ast.Expression#resolveForAllocation(org.eclipse.wst.jsdt.internal.compiler.lookup.BlockScope, org.eclipse.wst.jsdt.internal.compiler.ast.ASTNode) */ public TypeBinding resolveForAllocation(BlockScope scope, ASTNode location) { return this.resolveType(scope); } }