/******************************************************************************* * Copyright (c) 2000, 2011 IBM Corporation and others. * All rights reserved. This program and the accompanying materials * are made available under the terms of the Eclipse Public License v1.0 * which accompanies this distribution, and is available at * http://www.eclipse.org/legal/epl-v10.html * * Contributors: * IBM Corporation - initial API and implementation *******************************************************************************/ package org.eclipse.wst.jsdt.internal.compiler.ast; import org.eclipse.wst.jsdt.core.ast.IASTNode; import org.eclipse.wst.jsdt.core.ast.IExplicitConstructorCall; import org.eclipse.wst.jsdt.internal.compiler.ASTVisitor; import org.eclipse.wst.jsdt.internal.compiler.classfmt.ClassFileConstants; import org.eclipse.wst.jsdt.internal.compiler.flow.FlowContext; import org.eclipse.wst.jsdt.internal.compiler.flow.FlowInfo; import org.eclipse.wst.jsdt.internal.compiler.lookup.Binding; import org.eclipse.wst.jsdt.internal.compiler.lookup.BlockScope; import org.eclipse.wst.jsdt.internal.compiler.lookup.ExtraCompilerModifiers; import org.eclipse.wst.jsdt.internal.compiler.lookup.InvocationSite; import org.eclipse.wst.jsdt.internal.compiler.lookup.LocalTypeBinding; import org.eclipse.wst.jsdt.internal.compiler.lookup.MethodBinding; import org.eclipse.wst.jsdt.internal.compiler.lookup.MethodScope; import org.eclipse.wst.jsdt.internal.compiler.lookup.ProblemMethodBinding; import org.eclipse.wst.jsdt.internal.compiler.lookup.ReferenceBinding; import org.eclipse.wst.jsdt.internal.compiler.lookup.TagBits; import org.eclipse.wst.jsdt.internal.compiler.lookup.TypeBinding; import org.eclipse.wst.jsdt.internal.compiler.lookup.TypeConstants; import org.eclipse.wst.jsdt.internal.compiler.lookup.VariableBinding; public class ExplicitConstructorCall extends Statement implements InvocationSite, IExplicitConstructorCall { public Expression[] arguments; public Expression qualification; public MethodBinding binding; // exact binding resulting from lookup protected MethodBinding codegenBinding; // actual binding used for code generation (if no synthetic accessor) public int accessMode; public TypeReference[] typeArguments; public TypeBinding[] genericTypeArguments; public final static int ImplicitSuper = 1; public final static int This = 3; public VariableBinding[][] implicitArguments; // TODO Remove once DOMParser is activated public int typeArgumentsSourceStart; public ExplicitConstructorCall(int accessMode) { this.accessMode = accessMode; } public FlowInfo analyseCode( BlockScope currentScope, FlowContext flowContext, FlowInfo flowInfo) { // must verify that exceptions potentially thrown by this expression are caught in the method. try { ((MethodScope) currentScope).isConstructorCall = true; // process enclosing instance if (qualification != null) { flowInfo = qualification .analyseCode(currentScope, flowContext, flowInfo) .unconditionalInits(); } // process arguments if (arguments != null) { for (int i = 0, max = arguments.length; i < max; i++) { flowInfo = arguments[i] .analyseCode(currentScope, flowContext, flowInfo) .unconditionalInits(); } } manageEnclosingInstanceAccessIfNecessary(currentScope, flowInfo); manageSyntheticAccessIfNecessary(currentScope, flowInfo); return flowInfo; } finally { ((MethodScope) currentScope).isConstructorCall = false; } } /** * @see org.eclipse.wst.jsdt.internal.compiler.lookup.InvocationSite#genericTypeArguments() */ public TypeBinding[] genericTypeArguments() { return this.genericTypeArguments; } public boolean isImplicitSuper() { //return true if I'm of these compiler added statement super(); return (accessMode == ImplicitSuper); } public boolean isSuperAccess() { return accessMode != This; } public boolean isTypeAccess() { return true; } /* Inner emulation consists in either recording a dependency * link only, or performing one level of propagation. * * Dependency mechanism is used whenever dealing with source target * types, since by the time we reach them, we might not yet know their * exact need. */ void manageEnclosingInstanceAccessIfNecessary(BlockScope currentScope, FlowInfo flowInfo) { ReferenceBinding superTypeErasure = binding.declaringClass; if ((flowInfo.tagBits & FlowInfo.UNREACHABLE) == 0) { // perform some emulation work in case there is some and we are inside a local type only if (superTypeErasure.isNestedType() && currentScope.enclosingSourceType().isLocalType()) { if (superTypeErasure.isLocalType()) { ((LocalTypeBinding) superTypeErasure).addInnerEmulationDependent(currentScope, qualification != null); } } } } public void manageSyntheticAccessIfNecessary(BlockScope currentScope, FlowInfo flowInfo) { if ((flowInfo.tagBits & FlowInfo.UNREACHABLE) == 0) { // if constructor from parameterized type got found, use the original constructor at codegen time this.codegenBinding = this.binding.original(); // perform some emulation work in case there is some and we are inside a local type only if (binding.isPrivate() && accessMode != This) { ReferenceBinding declaringClass = this.codegenBinding.declaringClass; // from 1.4 on, local type constructor can lose their private flag to ease emulation if ((declaringClass.tagBits & TagBits.IsLocalType) != 0 && currentScope.compilerOptions().complianceLevel >= ClassFileConstants.JDK1_4) { // constructor will not be dumped as private, no emulation required thus this.codegenBinding.tagBits |= TagBits.ClearPrivateModifier; } } } } public StringBuffer printStatement(int indent, StringBuffer output) { printIndent(indent, output); if (qualification != null) qualification.printExpression(0, output).append('.'); if (typeArguments != null) { output.append('<'); int max = typeArguments.length - 1; for (int j = 0; j < max; j++) { typeArguments[j].print(0, output); output.append(", ");//$NON-NLS-1$ } typeArguments[max].print(0, output); output.append('>'); } if (accessMode == This) { output.append("this("); //$NON-NLS-1$ } else { output.append("super("); //$NON-NLS-1$ } if (arguments != null) { for (int i = 0; i < arguments.length; i++) { if (i > 0) output.append(", "); //$NON-NLS-1$ arguments[i].printExpression(0, output); } } return output.append(");"); //$NON-NLS-1$ } public void resolve(BlockScope scope) { // the return type should be void for a constructor. // the test is made into getConstructor // mark the fact that we are in a constructor call..... // unmark at all returns MethodScope methodScope = scope.methodScope(); try { AbstractMethodDeclaration methodDeclaration = methodScope.referenceMethod(); if (methodDeclaration == null || !methodDeclaration.isConstructor() || ((ConstructorDeclaration) methodDeclaration).constructorCall != this) { // fault-tolerance if (this.qualification != null) { this.qualification.resolveType(scope); } if (this.typeArguments != null) { for (int i = 0, max = this.typeArguments.length; i < max; i++) { this.typeArguments[i].resolveType(scope, true /* check bounds*/); } } if (this.arguments != null) { for (int i = 0, max = this.arguments.length; i < max; i++) { this.arguments[i].resolveType(scope); } } return; } methodScope.isConstructorCall = true; ReferenceBinding receiverType = scope.enclosingReceiverType(); if (accessMode != This) receiverType = receiverType.superclass(); if (receiverType == null) { return; } // qualification should be from the type of the enclosingType if (qualification != null) { ReferenceBinding enclosingType = receiverType.enclosingType(); if (enclosingType == null) { this.bits |= ASTNode.DiscardEnclosingInstance; } else { qualification.resolveTypeExpecting(scope, enclosingType); } } // resolve type arguments (for generic constructor call) if (this.typeArguments != null) { int length = this.typeArguments.length; boolean argHasError = false; // typeChecks all arguments this.genericTypeArguments = new TypeBinding[length]; for (int i = 0; i < length; i++) { TypeReference typeReference = this.typeArguments[i]; if ((this.genericTypeArguments[i] = typeReference.resolveType(scope, true /* check bounds*/)) == null) { argHasError = true; } } if (argHasError) { return; } } // arguments buffering for the method lookup TypeBinding[] argumentTypes = Binding.NO_PARAMETERS; boolean argsContainCast = false; if (arguments != null) { boolean argHasError = false; // typeChecks all arguments int length = arguments.length; argumentTypes = new TypeBinding[length]; for (int i = 0; i < length; i++) { Expression argument = this.arguments[i]; if ((argumentTypes[i] = argument.resolveType(scope)) == null) { argHasError = true; } } if (argHasError) { // record a best guess, for clients who need hint about possible contructor match TypeBinding[] pseudoArgs = new TypeBinding[length]; for (int i = length; --i >= 0;) { pseudoArgs[i] = argumentTypes[i] == null ? TypeBinding.NULL : argumentTypes[i]; // replace args with errors with null type } this.binding = scope.findMethod(receiverType, TypeConstants.INIT, pseudoArgs, this); if (this.binding != null && !this.binding.isValidBinding()) { MethodBinding closestMatch = ((ProblemMethodBinding)this.binding).closestMatch; // record the closest match, for clients who may still need hint about possible method match if (closestMatch != null) { this.binding = closestMatch; MethodBinding closestMatchOriginal = closestMatch.original(); if ((closestMatchOriginal.isPrivate() || closestMatchOriginal.declaringClass.isLocalType()) && !scope.isDefinedInMethod(closestMatchOriginal)) { // ignore cases where method is used from within inside itself (e.g. direct recursions) closestMatchOriginal.modifiers |= ExtraCompilerModifiers.AccLocallyUsed; } } } return; } } if ((binding = scope.getConstructor(receiverType, argumentTypes, this)).isValidBinding()) { if (isMethodUseDeprecated(this.binding, scope, this.accessMode != ImplicitSuper)) scope.problemReporter().deprecatedMethod(binding, this); checkInvocationArguments(scope, null, receiverType, binding, this.arguments, argumentTypes, argsContainCast, this); if (binding.isPrivate() || receiverType.isLocalType()) { binding.original().modifiers |= ExtraCompilerModifiers.AccLocallyUsed; } } else { if (binding.declaringClass == null) binding.declaringClass = receiverType; scope.problemReporter().invalidConstructor(this, binding); } } finally { methodScope.isConstructorCall = false; } } public void setActualReceiverType(ReferenceBinding receiverType) { // ignored } public void setDepth(int depth) { // ignore for here } public void setFieldIndex(int depth) { // ignore for here } public void traverse(ASTVisitor visitor, BlockScope scope) { if (visitor.visit(this, scope)) { if (this.qualification != null) { this.qualification.traverse(visitor, scope); } if (this.typeArguments != null) { for (int i = 0, typeArgumentsLength = this.typeArguments.length; i < typeArgumentsLength; i++) { this.typeArguments[i].traverse(visitor, scope); } } if (this.arguments != null) { for (int i = 0, argumentLength = this.arguments.length; i < argumentLength; i++) this.arguments[i].traverse(visitor, scope); } } visitor.endVisit(this, scope); } public int getASTType() { return IASTNode.EXPLICIT_CONSTRUCTOR_CALL; } }