/******************************************************************************* * Copyright (c) 2011, Daniel Murphy * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the <organization> nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL DANIEL MURPHY BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************/ package org.jbox2d.collision; import org.jbox2d.common.Mat22; import org.jbox2d.common.MathUtils; import org.jbox2d.common.Settings; import org.jbox2d.common.Transform; import org.jbox2d.common.Vec2; // updated to rev 100 /** * This is used to compute the current state of a contact manifold. * * @author daniel */ public class WorldManifold { /** * World vector pointing from A to B */ public final Vec2 normal; /** * World contact point (point of intersection) */ public final Vec2[] points; public WorldManifold() { normal = new Vec2(); points = new Vec2[Settings.maxManifoldPoints]; for (int i = 0; i < Settings.maxManifoldPoints; i++) { points[i] = new Vec2(); } } private final Vec2 pool3 = new Vec2(); private final Vec2 pool4 = new Vec2(); public final void initialize(final Manifold manifold, final Transform xfA, float radiusA, final Transform xfB, float radiusB) { if (manifold.pointCount == 0) { return; } switch (manifold.type) { case CIRCLES :{ // final Vec2 pointA = pool3; // final Vec2 pointB = pool4; // // normal.set(1, 0); // Transform.mulToOut(xfA, manifold.localPoint, pointA); // Transform.mulToOut(xfB, manifold.points[0].localPoint, pointB); // // if (MathUtils.distanceSquared(pointA, pointB) > Settings.EPSILON * Settings.EPSILON) { // normal.set(pointB).subLocal(pointA); // normal.normalize(); // } // // cA.set(normal).mulLocal(radiusA).addLocal(pointA); // cB.set(normal).mulLocal(radiusB).subLocal(pointB).negateLocal(); // points[0].set(cA).addLocal(cB).mulLocal(0.5f); final Vec2 pointA = pool3; final Vec2 pointB = pool4; normal.x = 1; normal.y = 0; pointA.x = xfA.position.x + xfA.R.m11 * manifold.localPoint.x + xfA.R.m21 * manifold.localPoint.y; pointA.y = xfA.position.y + xfA.R.m12 * manifold.localPoint.x + xfA.R.m22 * manifold.localPoint.y; pointB.x = xfB.position.x + xfB.R.m11 * manifold.points[0].localPoint.x + xfB.R.m21 * manifold.points[0].localPoint.y; pointB.y = xfB.position.y + xfB.R.m12 * manifold.points[0].localPoint.x + xfB.R.m22 * manifold.points[0].localPoint.y; if (MathUtils.distanceSquared(pointA, pointB) > Settings.EPSILON * Settings.EPSILON) { normal.x = pointB.x - pointA.x; normal.y = pointB.y - pointA.y; normal.normalize(); } final float cAx = normal.x * radiusA + pointA.x; final float cAy = normal.y * radiusA + pointA.y; final float cBx = -normal.x * radiusB + pointB.x; final float cBy = -normal.y * radiusB + pointB.y; points[0].x = (cAx + cBx) *.5f; points[0].y = (cAy + cBy) *.5f; } break; case FACE_A : { // final Vec2 planePoint = pool3; // // Mat22.mulToOut(xfA.R, manifold.localNormal, normal); // Transform.mulToOut(xfA, manifold.localPoint, planePoint); // // final Vec2 clipPoint = pool4; // // for (int i = 0; i < manifold.pointCount; i++) { // // b2Vec2 clipPoint = b2Mul(xfB, manifold->points[i].localPoint); // // b2Vec2 cA = clipPoint + (radiusA - b2Dot(clipPoint - planePoint, // // normal)) * normal; // // b2Vec2 cB = clipPoint - radiusB * normal; // // points[i] = 0.5f * (cA + cB); // Transform.mulToOut(xfB, manifold.points[i].localPoint, clipPoint); // // use cA as temporary for now // cA.set(clipPoint).subLocal(planePoint); // float scalar = radiusA - Vec2.dot(cA, normal); // cA.set(normal).mulLocal(scalar).addLocal(clipPoint); // cB.set(normal).mulLocal(radiusB).subLocal(clipPoint).negateLocal(); // points[i].set(cA).addLocal(cB).mulLocal(0.5f); // } final Vec2 planePoint = pool3; normal.x = xfA.R.m11 * manifold.localNormal.x + xfA.R.m21 * manifold.localNormal.y; normal.y = xfA.R.m12 * manifold.localNormal.x + xfA.R.m22 * manifold.localNormal.y; planePoint.x = xfA.position.x + xfA.R.m11 * manifold.localPoint.x + xfA.R.m21 * manifold.localPoint.y; planePoint.y = xfA.position.y + xfA.R.m12 * manifold.localPoint.x + xfA.R.m22 * manifold.localPoint.y; final Vec2 clipPoint = pool4; for (int i = 0; i < manifold.pointCount; i++) { // b2Vec2 clipPoint = b2Mul(xfB, manifold->points[i].localPoint); // b2Vec2 cA = clipPoint + (radiusA - b2Dot(clipPoint - planePoint, // normal)) * normal; // b2Vec2 cB = clipPoint - radiusB * normal; // points[i] = 0.5f * (cA + cB); clipPoint.x = xfB.position.x + xfB.R.m11 * manifold.points[i].localPoint.x + xfB.R.m21 * manifold.points[i].localPoint.y; clipPoint.y = xfB.position.y + xfB.R.m12 * manifold.points[i].localPoint.x + xfB.R.m22 * manifold.points[i].localPoint.y; final float scalar = radiusA - ((clipPoint.x - planePoint.x) * normal.x + (clipPoint.y - planePoint.y) * normal.y); final float cAx = normal.x * scalar + clipPoint.x; final float cAy = normal.y * scalar + clipPoint.y; final float cBx = - normal.x * radiusB + clipPoint.x; final float cBy = - normal.y * radiusB + clipPoint.y; points[i].x = (cAx + cBx)*.5f; points[i].y = (cAy + cBy)*.5f; } } break; case FACE_B : final Vec2 planePoint = pool3; final Mat22 R = xfB.R; normal.x = R.m11 * manifold.localNormal.x + R.m21 * manifold.localNormal.y; normal.y = R.m12 * manifold.localNormal.x + R.m22 * manifold.localNormal.y; final Vec2 v = manifold.localPoint; planePoint.x = xfB.position.x + xfB.R.m11 * v.x + xfB.R.m21 * v.y; planePoint.y = xfB.position.y + xfB.R.m12 * v.x + xfB.R.m22 * v.y; final Vec2 clipPoint = pool4; for (int i = 0; i < manifold.pointCount; i++) { // b2Vec2 clipPoint = b2Mul(xfA, manifold->points[i].localPoint); // b2Vec2 cB = clipPoint + (radiusB - b2Dot(clipPoint - planePoint, // normal)) * normal; // b2Vec2 cA = clipPoint - radiusA * normal; // points[i] = 0.5f * (cA + cB); // Transform.mulToOut(xfA, manifold.points[i].localPoint, clipPoint); // cB.set(clipPoint).subLocal(planePoint); // float scalar = radiusB - Vec2.dot(cB, normal); // cB.set(normal).mulLocal(scalar).addLocal(clipPoint); // cA.set(normal).mulLocal(radiusA).subLocal(clipPoint).negateLocal(); // points[i].set(cA).addLocal(cB).mulLocal(0.5f); // points[i] = 0.5f * (cA + cB); clipPoint.x = xfA.position.x + xfA.R.m11 * manifold.points[i].localPoint.x + xfA.R.m21 * manifold.points[i].localPoint.y; clipPoint.y = xfA.position.y + xfA.R.m12 * manifold.points[i].localPoint.x + xfA.R.m22 * manifold.points[i].localPoint.y; final float scalar = radiusB - ((clipPoint.x - planePoint.x) * normal.x + (clipPoint.y - planePoint.y) * normal.y); final float cBx = normal.x * scalar + clipPoint.x; final float cBy = normal.y * scalar + clipPoint.y; final float cAx = - normal.x * radiusA + clipPoint.x; final float cAy = - normal.y * radiusA + clipPoint.y; points[i].x = (cAx + cBx) *.5f; points[i].y = (cAy + cBy) *.5f; } // Ensure normal points from A to B. normal.x = -normal.x; normal.y = -normal.y; break; } } }