/*********************************************************************************************************************** * Copyright (C) 2010-2014 by the Stratosphere project (http://stratosphere.eu) * * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on * an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the * specific language governing permissions and limitations under the License. **********************************************************************************************************************/ package eu.stratosphere.pact.runtime.task; import eu.stratosphere.api.common.accumulators.Accumulator; import eu.stratosphere.api.common.accumulators.AccumulatorHelper; import eu.stratosphere.api.common.distributions.DataDistribution; import eu.stratosphere.api.common.functions.Function; import eu.stratosphere.api.common.functions.GenericCombine; import eu.stratosphere.api.common.typeutils.TypeComparator; import eu.stratosphere.api.common.typeutils.TypeComparatorFactory; import eu.stratosphere.api.common.typeutils.TypeSerializer; import eu.stratosphere.api.common.typeutils.TypeSerializerFactory; import eu.stratosphere.configuration.Configuration; import eu.stratosphere.core.io.IOReadableWritable; import eu.stratosphere.nephele.execution.CancelTaskException; import eu.stratosphere.nephele.execution.Environment; import eu.stratosphere.nephele.execution.librarycache.LibraryCacheManager; import eu.stratosphere.runtime.io.api.ChannelSelector; import eu.stratosphere.runtime.io.api.RecordWriter; import eu.stratosphere.runtime.io.api.MutableReader; import eu.stratosphere.runtime.io.api.MutableRecordReader; import eu.stratosphere.runtime.io.api.MutableUnionRecordReader; import eu.stratosphere.runtime.io.api.BufferWriter; import eu.stratosphere.nephele.services.accumulators.AccumulatorEvent; import eu.stratosphere.nephele.services.iomanager.IOManager; import eu.stratosphere.nephele.services.memorymanager.MemoryManager; import eu.stratosphere.nephele.template.AbstractInputTask; import eu.stratosphere.nephele.template.AbstractInvokable; import eu.stratosphere.nephele.template.AbstractTask; import eu.stratosphere.pact.runtime.plugable.DeserializationDelegate; import eu.stratosphere.pact.runtime.plugable.SerializationDelegate; import eu.stratosphere.pact.runtime.resettable.SpillingResettableMutableObjectIterator; import eu.stratosphere.pact.runtime.shipping.OutputCollector; import eu.stratosphere.pact.runtime.shipping.OutputEmitter; import eu.stratosphere.pact.runtime.shipping.RecordOutputCollector; import eu.stratosphere.pact.runtime.shipping.RecordOutputEmitter; import eu.stratosphere.pact.runtime.shipping.ShipStrategyType; import eu.stratosphere.pact.runtime.sort.CombiningUnilateralSortMerger; import eu.stratosphere.pact.runtime.sort.UnilateralSortMerger; import eu.stratosphere.pact.runtime.task.chaining.ChainedDriver; import eu.stratosphere.pact.runtime.task.chaining.ExceptionInChainedStubException; import eu.stratosphere.pact.runtime.task.util.CloseableInputProvider; import eu.stratosphere.pact.runtime.task.util.LocalStrategy; import eu.stratosphere.pact.runtime.task.util.ReaderIterator; import eu.stratosphere.pact.runtime.task.util.RecordReaderIterator; import eu.stratosphere.pact.runtime.task.util.TaskConfig; import eu.stratosphere.pact.runtime.udf.RuntimeUDFContext; import eu.stratosphere.types.Record; import eu.stratosphere.util.Collector; import eu.stratosphere.util.InstantiationUtil; import eu.stratosphere.util.MutableObjectIterator; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import java.io.IOException; import java.util.ArrayList; import java.util.List; import java.util.Map; /** * The abstract base class for all tasks. Encapsulated common behavior and implements the main life-cycle * of the user code. */ public class RegularPactTask<S extends Function, OT> extends AbstractTask implements PactTaskContext<S, OT> { protected static final Log LOG = LogFactory.getLog(RegularPactTask.class); // -------------------------------------------------------------------------------------------- /** * The driver that invokes the user code (the stub implementation). The central driver in this task * (further drivers may be chained behind this driver). */ protected volatile PactDriver<S, OT> driver; /** * The instantiated user code of this task's main operator (driver). May be null if the operator has no udf. */ protected S stub; /** * The udf's runtime context. */ protected RuntimeUDFContext runtimeUdfContext; /** * The collector that forwards the user code's results. May forward to a channel or to chained drivers within * this task. */ protected Collector<OT> output; /** * The output writers for the data that this task forwards to the next task. The latest driver (the central, if no chained * drivers exist, otherwise the last chained driver) produces its output to these writers. */ protected List<BufferWriter> eventualOutputs; /** * The input readers to this task. */ protected MutableReader<?>[] inputReaders; /** * The input readers for the configured broadcast variables for this task. */ protected MutableReader<?>[] broadcastInputReaders; /** * The inputs reader, wrapped in an iterator. Prior to the local strategies, etc... */ protected MutableObjectIterator<?>[] inputIterators; /** * The input readers for the configured broadcast variables, wrapped in an iterator. * Prior to the local strategies, etc... */ protected MutableObjectIterator<?>[] broadcastInputIterators; protected int[] iterativeInputs; protected int[] iterativeBroadcastInputs; /** * The local strategies that are applied on the inputs. */ protected volatile CloseableInputProvider<?>[] localStrategies; /** * The optional temp barriers on the inputs for dead-lock breaking. Are * optionally resettable. */ protected volatile TempBarrier<?>[] tempBarriers; /** * The resettable inputs in the case where no temp barrier is needed. */ protected volatile SpillingResettableMutableObjectIterator<?>[] resettableInputs; /** * The inputs to the operator. Return the readers' data after the application of the local strategy * and the temp-table barrier. */ protected MutableObjectIterator<?>[] inputs; /** * The serializers for the input data type. */ protected TypeSerializerFactory<?>[] inputSerializers; /** * The serializers for the broadcast input data types. */ protected TypeSerializerFactory<?>[] broadcastInputSerializers; /** * The comparators for the central driver. */ protected TypeComparator<?>[] inputComparators; /** * The task configuration with the setup parameters. */ protected TaskConfig config; /** * The class loader used to instantiate user code and user data types. */ protected ClassLoader userCodeClassLoader; /** * A list of chained drivers, if there are any. */ protected ArrayList<ChainedDriver<?, ?>> chainedTasks; /** * Certain inputs may be excluded from resetting. For example, the initial partial solution * in an iteration head must not be reseted (it is read through the back channel), when all * others are reseted. */ private boolean[] excludeFromReset; /** * Flag indicating for each input whether it is cached and can be reseted. */ private boolean[] inputIsCached; /** * flag indicating for each input whether it must be asynchronously materialized. */ private boolean[] inputIsAsyncMaterialized; /** * The amount of memory per input that is dedicated to the materialization. */ private int[] materializationMemory; /** * The flag that tags the task as still running. Checked periodically to abort processing. */ protected volatile boolean running = true; // -------------------------------------------------------------------------------------------- // Task Interface // -------------------------------------------------------------------------------------------- /** * Initialization method. Runs in the execution graph setup phase in the JobManager * and as a setup method on the TaskManager. */ @Override public void registerInputOutput() { if (LOG.isDebugEnabled()) { LOG.debug(formatLogString("Start registering input and output.")); } // get the classloader first. the classloader might have been set before by mock environments during testing if (this.userCodeClassLoader == null) { try { this.userCodeClassLoader = LibraryCacheManager.getClassLoader(getEnvironment().getJobID()); } catch (IOException ioe) { throw new RuntimeException("The ClassLoader for the user code could not be instantiated from the library cache.", ioe); } } // obtain task configuration (including stub parameters) Configuration taskConf = getTaskConfiguration(); taskConf.setClassLoader(this.userCodeClassLoader); this.config = new TaskConfig(taskConf); // now get the operator class which drives the operation final Class<? extends PactDriver<S, OT>> driverClass = this.config.getDriver(); this.driver = InstantiationUtil.instantiate(driverClass, PactDriver.class); // initialize the readers. this is necessary for nephele to create the input gates // however, this does not trigger any local processing. try { initInputReaders(); initBroadcastInputReaders(); } catch (Exception e) { throw new RuntimeException("Initializing the input streams failed" + e.getMessage() == null ? "." : ": " + e.getMessage(), e); } // initialize the writers. this is necessary for nephele to create the output gates. // because in the presence of chained tasks, the tasks writers depend on the last task in the chain, // we need to initialize the chained tasks as well. the chained tasks are only set up, but no work // (such as setting up a sorter, etc.) starts try { initOutputs(); } catch (Exception e) { throw new RuntimeException("Initializing the output handlers failed" + e.getMessage() == null ? "." : ": " + e.getMessage(), e); } if (LOG.isDebugEnabled()) { LOG.debug(formatLogString("Finished registering input and output.")); } } /** * The main work method. */ @Override public void invoke() throws Exception { if (LOG.isDebugEnabled()) { LOG.debug(formatLogString("Start task code.")); } // whatever happens in this scope, make sure that the local strategies are cleaned up! // note that the initialization of the local strategies is in the try-finally block as well, // so that the thread that creates them catches its own errors that may happen in that process. // this is especially important, since there may be asynchronous closes (such as through canceling). try { // initialize the serializers (one per channel) of the record writers initOutputWriters(this.eventualOutputs); // initialize the remaining data structures on the input and trigger the local processing // the local processing includes building the dams / caches try { int numInputs = driver.getNumberOfInputs(); int numBroadcastInputs = this.config.getNumBroadcastInputs(); initInputsSerializersAndComparators(numInputs); initBroadcastInputsSerializers(numBroadcastInputs); // set the iterative status for inputs and broadcast inputs { List<Integer> iterativeInputs = new ArrayList<Integer>(); for (int i = 0; i < numInputs; i++) { final int numberOfEventsUntilInterrupt = getTaskConfig().getNumberOfEventsUntilInterruptInIterativeGate(i); if (numberOfEventsUntilInterrupt < 0) { throw new IllegalArgumentException(); } else if (numberOfEventsUntilInterrupt > 0) { this.inputReaders[i].setIterative(numberOfEventsUntilInterrupt); iterativeInputs.add(i); if (LOG.isDebugEnabled()) { LOG.debug(formatLogString("Input [" + i + "] reads in supersteps with [" + + numberOfEventsUntilInterrupt + "] event(s) till next superstep.")); } } } this.iterativeInputs = asArray(iterativeInputs); } { List<Integer> iterativeBcInputs = new ArrayList<Integer>(); for (int i = 0; i < numBroadcastInputs; i++) { final int numberOfEventsUntilInterrupt = getTaskConfig().getNumberOfEventsUntilInterruptInIterativeBroadcastGate(i); if (numberOfEventsUntilInterrupt < 0) { throw new IllegalArgumentException(); } else if (numberOfEventsUntilInterrupt > 0) { this.broadcastInputReaders[i].setIterative(numberOfEventsUntilInterrupt); iterativeBcInputs.add(i); if (LOG.isDebugEnabled()) { LOG.debug(formatLogString("Broadcast input [" + i + "] reads in supersteps with [" + + numberOfEventsUntilInterrupt + "] event(s) till next superstep.")); } } } this.iterativeBroadcastInputs = asArray(iterativeBcInputs); } initLocalStrategies(numInputs); } catch (Exception e) { throw new RuntimeException("Initializing the input processing failed" + e.getMessage() == null ? "." : ": " + e.getMessage(), e); } if (!this.running) { if (LOG.isDebugEnabled()) { LOG.debug(formatLogString("Task cancelled before task code was started.")); } return; } // pre main-function initialization initialize(); // read the broadcast variables for (int i = 0; i < this.config.getNumBroadcastInputs(); i++) { final String name = this.config.getBroadcastInputName(i); readAndSetBroadcastInput(i, name, this.runtimeUdfContext); } // the work goes here run(); } finally { // clean up in any case! closeLocalStrategiesAndCaches(); } if (this.running) { if (LOG.isDebugEnabled()) { LOG.debug(formatLogString("Finished task code.")); } } else { if (LOG.isDebugEnabled()) { LOG.debug(formatLogString("Task code cancelled.")); } } } @Override public void cancel() throws Exception { this.running = false; if (LOG.isDebugEnabled()) { LOG.debug(formatLogString("Cancelling task code")); } try { if (this.driver != null) { this.driver.cancel(); } } finally { closeLocalStrategiesAndCaches(); } } /** * Sets the class-loader to be used to load the user code. * * @param cl The class-loader to be used to load the user code. */ public void setUserCodeClassLoader(ClassLoader cl) { this.userCodeClassLoader = cl; } // -------------------------------------------------------------------------------------------- // Main Work Methods // -------------------------------------------------------------------------------------------- protected void initialize() throws Exception { // create the operator try { this.driver.setup(this); } catch (Throwable t) { throw new Exception("The driver setup for '" + this.getEnvironment().getTaskName() + "' , caused an error: " + t.getMessage(), t); } this.runtimeUdfContext = createRuntimeContext(getEnvironment().getTaskName()); // instantiate the UDF try { final Class<? super S> userCodeFunctionType = this.driver.getStubType(); // if the class is null, the driver has no user code if (userCodeFunctionType != null) { this.stub = initStub(userCodeFunctionType); } } catch (Exception e) { throw new RuntimeException("Initializing the UDF" + e.getMessage() == null ? "." : ": " + e.getMessage(), e); } } protected <X> void readAndSetBroadcastInput(int inputNum, String bcVarName, RuntimeUDFContext context) throws IOException { // drain the broadcast inputs @SuppressWarnings("unchecked") final MutableObjectIterator<X> reader = (MutableObjectIterator<X>) this.broadcastInputIterators[inputNum]; @SuppressWarnings("unchecked") final TypeSerializer<X> serializer = (TypeSerializer<X>) this.broadcastInputSerializers[inputNum].getSerializer(); ArrayList<X> collection = new ArrayList<X>(); X record = serializer.createInstance(); while (this.running && ((record = reader.next(record)) != null)) { collection.add(record); record = serializer.createInstance(); } context.setBroadcastVariable(bcVarName, collection); } protected void run() throws Exception { // ---------------------------- Now, the actual processing starts ------------------------ // check for asynchronous canceling if (!this.running) { return; } boolean stubOpen = false; try { // run the data preparation try { this.driver.prepare(); } catch (Throwable t) { // if the preparation caused an error, clean up // errors during clean-up are swallowed, because we have already a root exception throw new Exception("The data preparation for task '" + this.getEnvironment().getTaskName() + "' , caused an error: " + t.getMessage(), t); } // check for canceling if (!this.running) { return; } // start all chained tasks RegularPactTask.openChainedTasks(this.chainedTasks, this); // open stub implementation if (this.stub != null) { try { Configuration stubConfig = this.config.getStubParameters(); this.stub.open(stubConfig); stubOpen = true; } catch (Throwable t) { throw new Exception("The user defined 'open()' method caused an exception: " + t.getMessage(), t); } } // run the user code this.driver.run(); // close. We close here such that a regular close throwing an exception marks a task as failed. if (this.running && this.stub != null) { this.stub.close(); stubOpen = false; } this.output.close(); // close all chained tasks letting them report failure RegularPactTask.closeChainedTasks(this.chainedTasks, this); // Collect the accumulators of all involved UDFs and send them to the // JobManager. close() has been called earlier for all involved UDFs // (using this.stub.close() and closeChainedTasks()), so UDFs can no longer // modify accumulators.ll; if (this.stub != null) { // collect the counters from the stub Map<String, Accumulator<?,?>> accumulators = this.stub.getRuntimeContext().getAllAccumulators(); RegularPactTask.reportAndClearAccumulators(getEnvironment(), accumulators, this.chainedTasks); } } catch (Exception ex) { // close the input, but do not report any exceptions, since we already have another root cause if (stubOpen) { try { this.stub.close(); } catch (Throwable t) {} } RegularPactTask.cancelChainedTasks(this.chainedTasks); ex = ExceptionInChainedStubException.exceptionUnwrap(ex); if (ex instanceof CancelTaskException) { // forward canceling exception throw ex; } else if (this.running) { // throw only if task was not cancelled. in the case of canceling, exceptions are expected RegularPactTask.logAndThrowException(ex, this); } } finally { this.driver.cleanup(); } } /** * This method is called at the end of a task, receiving the accumulators of * the task and the chained tasks. It merges them into a single map of * accumulators and sends them to the JobManager. * * @param chainedTasks * Each chained task might have accumulators which will be merged * with the accumulators of the stub. */ protected static void reportAndClearAccumulators(Environment env, Map<String, Accumulator<?, ?>> accumulators, ArrayList<ChainedDriver<?, ?>> chainedTasks) { // We can merge here the accumulators from the stub and the chained // tasks. Type conflicts can occur here if counters with same name but // different type were used. for (ChainedDriver<?, ?> chainedTask : chainedTasks) { Map<String, Accumulator<?, ?>> chainedAccumulators = chainedTask.getStub().getRuntimeContext().getAllAccumulators(); AccumulatorHelper.mergeInto(accumulators, chainedAccumulators); } // Don't report if the UDF didn't collect any accumulators if (accumulators.size() == 0) { return; } // Report accumulators to JobManager synchronized (env.getAccumulatorProtocolProxy()) { try { env.getAccumulatorProtocolProxy().reportAccumulatorResult( new AccumulatorEvent(env.getJobID(), accumulators, true)); } catch (IOException e) { throw new RuntimeException("Communication with JobManager is broken. Could not send accumulators.", e); } } // We also clear the accumulators, since stub instances might be reused // (e.g. in iterations) and we don't want to count twice. This may not be // done before sending AccumulatorHelper.resetAndClearAccumulators(accumulators); for (ChainedDriver<?, ?> chainedTask : chainedTasks) { AccumulatorHelper.resetAndClearAccumulators(chainedTask.getStub().getRuntimeContext().getAllAccumulators()); } } protected void closeLocalStrategiesAndCaches() { if (this.localStrategies != null) { for (int i = 0; i < this.localStrategies.length; i++) { if (this.localStrategies[i] != null) { try { this.localStrategies[i].close(); } catch (Throwable t) { LOG.error("Error closing local strategy for input " + i, t); } } } } if (this.tempBarriers != null) { for (int i = 0; i < this.tempBarriers.length; i++) { if (this.tempBarriers[i] != null) { try { this.tempBarriers[i].close(); } catch (Throwable t) { LOG.error("Error closing temp barrier for input " + i, t); } } } } if (this.resettableInputs != null) { for (int i = 0; i < this.resettableInputs.length; i++) { if (this.resettableInputs[i] != null) { try { this.resettableInputs[i].close(); } catch (Throwable t) { LOG.error("Error closing cache for input " + i, t); } } } } } // -------------------------------------------------------------------------------------------- // Task Setup and Teardown // -------------------------------------------------------------------------------------------- /** * @return the last output collector in the collector chain */ @SuppressWarnings("unchecked") protected Collector<OT> getLastOutputCollector() { int numChained = this.chainedTasks.size(); return (numChained == 0) ? output : (Collector<OT>) chainedTasks.get(numChained - 1).getOutputCollector(); } /** * Sets the last output {@link Collector} of the collector chain of this {@link RegularPactTask}. * <p/> * In case of chained tasks, the output collector of the last {@link ChainedDriver} is set. Otherwise it is the * single collector of the {@link RegularPactTask}. * * @param newOutputCollector new output collector to set as last collector */ protected void setLastOutputCollector(Collector<OT> newOutputCollector) { int numChained = this.chainedTasks.size(); if (numChained == 0) { output = newOutputCollector; return; } chainedTasks.get(numChained - 1).setOutputCollector(newOutputCollector); } public TaskConfig getLastTasksConfig() { int numChained = this.chainedTasks.size(); return (numChained == 0) ? config : chainedTasks.get(numChained - 1).getTaskConfig(); } protected S initStub(Class<? super S> stubSuperClass) throws Exception { try { S stub = config.<S>getStubWrapper(this.userCodeClassLoader).getUserCodeObject(stubSuperClass, this.userCodeClassLoader); // check if the class is a subclass, if the check is required if (stubSuperClass != null && !stubSuperClass.isAssignableFrom(stub.getClass())) { Thread.dumpStack(); throw new RuntimeException("The class '" + stub.getClass().getName() + "' is not a subclass of '" + stubSuperClass.getName() + "' as is required."); } stub.setRuntimeContext(this.runtimeUdfContext); return stub; } catch (ClassCastException ccex) { throw new Exception("The stub class is not a proper subclass of " + stubSuperClass.getName(), ccex); } } /** * Creates the record readers for the number of inputs as defined by {@link #getNumTaskInputs()}. * * This method requires that the task configuration, the driver, and the user-code class loader are set. */ @SuppressWarnings("unchecked") protected void initInputReaders() throws Exception { final int numInputs = getNumTaskInputs(); final MutableReader<?>[] inputReaders = new MutableReader[numInputs]; int numGates = 0; for (int i = 0; i < numInputs; i++) { // ---------------- create the input readers --------------------- // in case where a logical input unions multiple physical inputs, create a union reader final int groupSize = this.config.getGroupSize(i); numGates += groupSize; if (groupSize == 1) { // non-union case inputReaders[i] = new MutableRecordReader<IOReadableWritable>(this); } else if (groupSize > 1){ // union case MutableRecordReader<IOReadableWritable>[] readers = new MutableRecordReader[groupSize]; for (int j = 0; j < groupSize; ++j) { readers[j] = new MutableRecordReader<IOReadableWritable>(this); } inputReaders[i] = new MutableUnionRecordReader<IOReadableWritable>(readers); } else { throw new Exception("Illegal input group size in task configuration: " + groupSize); } } this.inputReaders = inputReaders; // final sanity check if (numGates != this.config.getNumInputs()) { throw new Exception("Illegal configuration: Number of input gates and group sizes are not consistent."); } } /** * Creates the record readers for the extra broadcast inputs as configured by {@link TaskConfig#getNumBroadcastInputs()}. * * This method requires that the task configuration, the driver, and the user-code class loader are set. */ @SuppressWarnings("unchecked") protected void initBroadcastInputReaders() throws Exception { final int numBroadcastInputs = this.config.getNumBroadcastInputs(); final MutableReader<?>[] broadcastInputReaders = new MutableReader[numBroadcastInputs]; for (int i = 0; i < this.config.getNumBroadcastInputs(); i++) { // ---------------- create the input readers --------------------- // in case where a logical input unions multiple physical inputs, create a union reader final int groupSize = this.config.getBroadcastGroupSize(i); if (groupSize == 1) { // non-union case broadcastInputReaders[i] = new MutableRecordReader<IOReadableWritable>(this); } else if (groupSize > 1){ // union case MutableRecordReader<IOReadableWritable>[] readers = new MutableRecordReader[groupSize]; for (int j = 0; j < groupSize; ++j) { readers[j] = new MutableRecordReader<IOReadableWritable>(this); } broadcastInputReaders[i] = new MutableUnionRecordReader<IOReadableWritable>(readers); } else { throw new Exception("Illegal input group size in task configuration: " + groupSize); } } this.broadcastInputReaders = broadcastInputReaders; } /** * Creates all the serializers and comparators. */ protected void initInputsSerializersAndComparators(int numInputs) throws Exception { this.inputSerializers = new TypeSerializerFactory<?>[numInputs]; this.inputComparators = this.driver.requiresComparatorOnInput() ? new TypeComparator[numInputs] : null; this.inputIterators = new MutableObjectIterator[numInputs]; for (int i = 0; i < numInputs; i++) { // ---------------- create the serializer first --------------------- final TypeSerializerFactory<?> serializerFactory = this.config.getInputSerializer(i, this.userCodeClassLoader); this.inputSerializers[i] = serializerFactory; // ---------------- create the driver's comparator --------------------- if (this.inputComparators != null) { final TypeComparatorFactory<?> comparatorFactory = this.config.getDriverComparator(i, this.userCodeClassLoader); this.inputComparators[i] = comparatorFactory.createComparator(); } this.inputIterators[i] = createInputIterator(this.inputReaders[i], this.inputSerializers[i]); } } /** * Creates all the serializers and iterators for the broadcast inputs. */ protected void initBroadcastInputsSerializers(int numBroadcastInputs) throws Exception { this.broadcastInputSerializers = new TypeSerializerFactory[numBroadcastInputs]; this.broadcastInputIterators = new MutableObjectIterator[numBroadcastInputs]; for (int i = 0; i < numBroadcastInputs; i++) { // ---------------- create the serializer first --------------------- final TypeSerializerFactory<?> serializerFactory = this.config.getBroadcastInputSerializer(i, this.userCodeClassLoader); this.broadcastInputSerializers[i] = serializerFactory; this.broadcastInputIterators[i] = createInputIterator(this.broadcastInputReaders[i], this.broadcastInputSerializers[i]); } } /** * * NOTE: This method must be invoked after the invocation of {@code #initInputReaders()} and * {@code #initInputSerializersAndComparators(int)}! * * @param numInputs */ protected void initLocalStrategies(int numInputs) throws Exception { final MemoryManager memMan = getMemoryManager(); final IOManager ioMan = getIOManager(); this.localStrategies = new CloseableInputProvider[numInputs]; this.inputs = new MutableObjectIterator[numInputs]; this.excludeFromReset = new boolean[numInputs]; this.inputIsCached = new boolean[numInputs]; this.inputIsAsyncMaterialized = new boolean[numInputs]; this.materializationMemory = new int[numInputs]; // set up the local strategies first, such that the can work before any temp barrier is created for (int i = 0; i < numInputs; i++) { initInputLocalStrategy(i); } // we do another loop over the inputs, because we want to instantiate all // sorters, etc before requesting the first input (as this call may block) // we have two types of materialized inputs, and both are replayable (can act as a cache) // The first variant materializes in a different thread and hence // acts as a pipeline breaker. this one should only be there, if a pipeline breaker is needed. // the second variant spills to the side and will not read unless the result is also consumed // in a pipelined fashion. this.resettableInputs = new SpillingResettableMutableObjectIterator[numInputs]; this.tempBarriers = new TempBarrier[numInputs]; for (int i = 0; i < numInputs; i++) { final int memoryPages; final boolean async = this.config.isInputAsynchronouslyMaterialized(i); final boolean cached = this.config.isInputCached(i); this.inputIsAsyncMaterialized[i] = async; this.inputIsCached[i] = cached; if (async || cached) { memoryPages = memMan.computeNumberOfPages(this.config.getInputMaterializationMemory(i)); if (memoryPages <= 0) { throw new Exception("Input marked as materialized/cached, but no memory for materialization provided."); } this.materializationMemory[i] = memoryPages; } else { memoryPages = 0; } if (async) { @SuppressWarnings({ "unchecked", "rawtypes" }) TempBarrier<?> barrier = new TempBarrier(this, getInput(i), this.inputSerializers[i], memMan, ioMan, memoryPages); barrier.startReading(); this.tempBarriers[i] = barrier; this.inputs[i] = null; } else if (cached) { @SuppressWarnings({ "unchecked", "rawtypes" }) SpillingResettableMutableObjectIterator<?> iter = new SpillingResettableMutableObjectIterator( getInput(i), this.inputSerializers[i].getSerializer(), getMemoryManager(), getIOManager(), memoryPages, this); this.resettableInputs[i] = iter; this.inputs[i] = iter; } } } protected void resetAllInputs() throws Exception { // close all local-strategies. they will either get re-initialized, or we have // read them now and their data is cached for (int i = 0; i < this.localStrategies.length; i++) { if (this.localStrategies[i] != null) { this.localStrategies[i].close(); this.localStrategies[i] = null; } } final MemoryManager memMan = getMemoryManager(); final IOManager ioMan = getIOManager(); // reset the caches, or re-run the input local strategy for (int i = 0; i < this.inputs.length; i++) { if (this.excludeFromReset[i]) { if (this.tempBarriers[i] != null) { this.tempBarriers[i].close(); this.tempBarriers[i] = null; } else if (this.resettableInputs[i] != null) { this.resettableInputs[i].close(); this.resettableInputs[i] = null; } } else { // make sure the input is not available directly, but are lazily fetched again this.inputs[i] = null; if (this.inputIsCached[i]) { if (this.tempBarriers[i] != null) { this.inputs[i] = this.tempBarriers[i].getIterator(); } else if (this.resettableInputs[i] != null) { this.resettableInputs[i].consumeAndCacheRemainingData(); this.resettableInputs[i].reset(); this.inputs[i] = this.resettableInputs[i]; } else { throw new RuntimeException("Found a resettable input, but no temp barrier and no resettable iterator."); } } else { // close the async barrier if there is one if (this.tempBarriers[i] != null) { this.tempBarriers[i].close(); } // recreate the local strategy initInputLocalStrategy(i); if (this.inputIsAsyncMaterialized[i]) { final int pages = this.materializationMemory[i]; @SuppressWarnings({ "unchecked", "rawtypes" }) TempBarrier<?> barrier = new TempBarrier(this, getInput(i), this.inputSerializers[i], memMan, ioMan, pages); barrier.startReading(); this.tempBarriers[i] = barrier; this.inputs[i] = null; } } } } } protected void excludeFromReset(int inputNum) { this.excludeFromReset[inputNum] = true; } private void initInputLocalStrategy(int inputNum) throws Exception { // check if there is already a strategy if (this.localStrategies[inputNum] != null) { throw new IllegalStateException(); } // now set up the local strategy final LocalStrategy localStrategy = this.config.getInputLocalStrategy(inputNum); if (localStrategy != null) { switch (localStrategy) { case NONE: // the input is as it is this.inputs[inputNum] = this.inputIterators[inputNum]; break; case SORT: @SuppressWarnings({ "rawtypes", "unchecked" }) UnilateralSortMerger<?> sorter = new UnilateralSortMerger(getMemoryManager(), getIOManager(), this.inputIterators[inputNum], this, this.inputSerializers[inputNum], getLocalStrategyComparator(inputNum), this.config.getMemoryInput(inputNum), this.config.getFilehandlesInput(inputNum), this.config.getSpillingThresholdInput(inputNum)); // set the input to null such that it will be lazily fetched from the input strategy this.inputs[inputNum] = null; this.localStrategies[inputNum] = sorter; break; case COMBININGSORT: // sanity check this special case! // this still breaks a bit of the abstraction! // we should have nested configurations for the local strategies to solve that if (inputNum != 0) { throw new IllegalStateException("Performing combining sort outside a (group)reduce task!"); } // instantiate ourselves a combiner. we should not use the stub, because the sort and the // subsequent (group)reduce would otherwise share it multi-threaded final Class<S> userCodeFunctionType = this.driver.getStubType(); if (userCodeFunctionType == null) { throw new IllegalStateException("Performing combining sort outside a reduce task!"); } final S localStub; try { localStub = initStub(userCodeFunctionType); } catch (Exception e) { throw new RuntimeException("Initializing the user code and the configuration failed" + e.getMessage() == null ? "." : ": " + e.getMessage(), e); } if (!(localStub instanceof GenericCombine)) { throw new IllegalStateException("Performing combining sort outside a reduce task!"); } @SuppressWarnings({ "rawtypes", "unchecked" }) CombiningUnilateralSortMerger<?> cSorter = new CombiningUnilateralSortMerger( (GenericCombine) localStub, getMemoryManager(), getIOManager(), this.inputIterators[inputNum], this, this.inputSerializers[inputNum], getLocalStrategyComparator(inputNum), this.config.getMemoryInput(inputNum), this.config.getFilehandlesInput(inputNum), this.config.getSpillingThresholdInput(inputNum)); cSorter.setUdfConfiguration(this.config.getStubParameters()); // set the input to null such that it will be lazily fetched from the input strategy this.inputs[inputNum] = null; this.localStrategies[inputNum] = cSorter; break; default: throw new Exception("Unrecognized local strategy provided: " + localStrategy.name()); } } else { // no local strategy in the config this.inputs[inputNum] = this.inputIterators[inputNum]; } } private <T> TypeComparator<T> getLocalStrategyComparator(int inputNum) throws Exception { TypeComparatorFactory<T> compFact = this.config.getInputComparator(inputNum, this.userCodeClassLoader); if (compFact == null) { throw new Exception("Missing comparator factory for local strategy on input " + inputNum); } return compFact.createComparator(); } protected MutableObjectIterator<?> createInputIterator(MutableReader<?> inputReader, TypeSerializerFactory<?> serializerFactory) { if (serializerFactory.getDataType().equals(Record.class)) { // record specific deserialization @SuppressWarnings("unchecked") MutableReader<Record> reader = (MutableReader<Record>) inputReader; return new RecordReaderIterator(reader); } else { // generic data type serialization @SuppressWarnings("unchecked") MutableReader<DeserializationDelegate<?>> reader = (MutableReader<DeserializationDelegate<?>>) inputReader; @SuppressWarnings({ "unchecked", "rawtypes" }) final MutableObjectIterator<?> iter = new ReaderIterator(reader, serializerFactory.getSerializer()); return iter; } // // generic data type serialization // @SuppressWarnings("unchecked") // MutableReader<DeserializationDelegate<?>> reader = (MutableReader<DeserializationDelegate<?>>) inputReader; // @SuppressWarnings({ "unchecked", "rawtypes" }) // final MutableObjectIterator<?> iter = new ReaderIterator(reader, serializer); // return iter; } protected int getNumTaskInputs() { return this.driver.getNumberOfInputs(); } /** * Creates a writer for each output. Creates an OutputCollector which forwards its input to all writers. * The output collector applies the configured shipping strategies for each writer. */ protected void initOutputs() throws Exception { this.chainedTasks = new ArrayList<ChainedDriver<?, ?>>(); this.eventualOutputs = new ArrayList<BufferWriter>(); this.output = initOutputs(this, this.userCodeClassLoader, this.config, this.chainedTasks, this.eventualOutputs); } public RuntimeUDFContext createRuntimeContext(String taskName) { Environment env = getEnvironment(); return new RuntimeUDFContext(taskName, env.getCurrentNumberOfSubtasks(), env.getIndexInSubtaskGroup(), env.getCopyTask()); } // -------------------------------------------------------------------------------------------- // Task Context Signature // ------------------------------------------------------------------------------------------- @Override public TaskConfig getTaskConfig() { return this.config; } @Override public ClassLoader getUserCodeClassLoader() { return this.userCodeClassLoader; } @Override public MemoryManager getMemoryManager() { return getEnvironment().getMemoryManager(); } @Override public IOManager getIOManager() { return getEnvironment().getIOManager(); } @Override public S getStub() { return this.stub; } @Override public Collector<OT> getOutputCollector() { return this.output; } @Override public AbstractInvokable getOwningNepheleTask() { return this; } @Override public String formatLogString(String message) { return constructLogString(message, getEnvironment().getTaskName(), this); } @Override public <X> MutableObjectIterator<X> getInput(int index) { if (index < 0 || index > this.driver.getNumberOfInputs()) { throw new IndexOutOfBoundsException(); } // check for lazy assignment from input strategies if (this.inputs[index] != null) { @SuppressWarnings("unchecked") MutableObjectIterator<X> in = (MutableObjectIterator<X>) this.inputs[index]; return in; } else { final MutableObjectIterator<X> in; try { if (this.tempBarriers[index] != null) { @SuppressWarnings("unchecked") MutableObjectIterator<X> iter = (MutableObjectIterator<X>) this.tempBarriers[index].getIterator(); in = iter; } else if (this.localStrategies[index] != null) { @SuppressWarnings("unchecked") MutableObjectIterator<X> iter = (MutableObjectIterator<X>) this.localStrategies[index].getIterator(); in = iter; } else { throw new RuntimeException("Bug: null input iterator, null temp barrier, and null local strategy."); } this.inputs[index] = in; return in; } catch (InterruptedException iex) { throw new RuntimeException("Interrupted while waiting for input " + index + " to become available."); } catch (IOException ioex) { throw new RuntimeException("An I/O Exception occurred whily obaining input " + index + "."); } } } @Override public <X> TypeSerializerFactory<X> getInputSerializer(int index) { if (index < 0 || index >= this.driver.getNumberOfInputs()) { throw new IndexOutOfBoundsException(); } @SuppressWarnings("unchecked") final TypeSerializerFactory<X> serializerFactory = (TypeSerializerFactory<X>) this.inputSerializers[index]; return serializerFactory; } @Override public <X> TypeComparator<X> getInputComparator(int index) { if (this.inputComparators == null) { throw new IllegalStateException("Comparators have not been created!"); } else if (index < 0 || index >= this.driver.getNumberOfInputs()) { throw new IndexOutOfBoundsException(); } @SuppressWarnings("unchecked") final TypeComparator<X> comparator = (TypeComparator<X>) this.inputComparators[index]; return comparator; } // ============================================================================================ // Static Utilities // // Utilities are consolidated here to ensure a uniform way of running, // logging, exception handling, and error messages. // ============================================================================================ // -------------------------------------------------------------------------------------------- // Logging // -------------------------------------------------------------------------------------------- /** * Utility function that composes a string for logging purposes. The string includes the given message, * the given name of the task and the index in its subtask group as well as the number of instances * that exist in its subtask group. * * @param message The main message for the log. * @param taskName The name of the task. * @param parent The nephele task that contains the code producing the message. * * @return The string for logging. */ public static String constructLogString(String message, String taskName, AbstractInvokable parent) { return message + ": " + taskName + " (" + (parent.getEnvironment().getIndexInSubtaskGroup() + 1) + '/' + parent.getEnvironment().getCurrentNumberOfSubtasks() + ')'; } /** * Prints an error message and throws the given exception. If the exception is of the type * {@link ExceptionInChainedStubException} then the chain of contained exceptions is followed * until an exception of a different type is found. * * @param ex The exception to be thrown. * @param parent The parent task, whose information is included in the log message. * @throws Exception Always thrown. */ public static void logAndThrowException(Exception ex, AbstractInvokable parent) throws Exception { String taskName; if (ex instanceof ExceptionInChainedStubException) { do { ExceptionInChainedStubException cex = (ExceptionInChainedStubException) ex; taskName = cex.getTaskName(); ex = cex.getWrappedException(); } while (ex instanceof ExceptionInChainedStubException); } else { taskName = parent.getEnvironment().getTaskName(); } if (LOG.isErrorEnabled()) { LOG.error(constructLogString("Error in task code", taskName, parent), ex); } throw ex; } // -------------------------------------------------------------------------------------------- // Result Shipping and Chained Tasks // -------------------------------------------------------------------------------------------- /** * Creates the {@link Collector} for the given task, as described by the given configuration. The * output collector contains the writers that forward the data to the different tasks that the given task * is connected to. Each writer applies a the partitioning as described in the configuration. * * @param task The task that the output collector is created for. * @param config The configuration describing the output shipping strategies. * @param cl The classloader used to load user defined types. * @param numOutputs The number of outputs described in the configuration. * * @return The OutputCollector that data produced in this task is submitted to. */ public static <T> Collector<T> getOutputCollector(AbstractInvokable task, TaskConfig config, ClassLoader cl, List<BufferWriter> eventualOutputs, int numOutputs) throws Exception { if (numOutputs <= 0) { throw new Exception("BUG: The task must have at least one output"); } // get the factory for the serializer final TypeSerializerFactory<T> serializerFactory = config.getOutputSerializer(cl); // special case the Record if (serializerFactory.getDataType().equals(Record.class)) { final List<RecordWriter<Record>> writers = new ArrayList<RecordWriter<Record>>(numOutputs); // create a writer for each output for (int i = 0; i < numOutputs; i++) { // create the OutputEmitter from output ship strategy final ShipStrategyType strategy = config.getOutputShipStrategy(i); final TypeComparatorFactory<?> compFact = config.getOutputComparator(i, cl); final RecordOutputEmitter oe; if (compFact == null) { oe = new RecordOutputEmitter(strategy); } else { @SuppressWarnings("unchecked") TypeComparator<Record> comparator = (TypeComparator<Record>) compFact.createComparator(); if (!comparator.supportsCompareAgainstReference()) { throw new Exception("Incompatibe serializer-/comparator factories."); } final DataDistribution distribution = config.getOutputDataDistribution(i, cl); oe = new RecordOutputEmitter(strategy, comparator, distribution); } if (task instanceof AbstractTask) { writers.add(new RecordWriter<Record>((AbstractTask) task, oe)); } else if (task instanceof AbstractInputTask<?>) { writers.add(new RecordWriter<Record>((AbstractInputTask<?>) task, oe)); } } if (eventualOutputs != null) { eventualOutputs.addAll(writers); } @SuppressWarnings("unchecked") final Collector<T> outColl = (Collector<T>) new RecordOutputCollector(writers); return outColl; } else { // generic case final List<RecordWriter<SerializationDelegate<T>>> writers = new ArrayList<RecordWriter<SerializationDelegate<T>>>(numOutputs); // create a writer for each output for (int i = 0; i < numOutputs; i++) { // create the OutputEmitter from output ship strategy final ShipStrategyType strategy = config.getOutputShipStrategy(i); final TypeComparatorFactory<T> compFactory = config.getOutputComparator(i, cl); final DataDistribution dataDist = config.getOutputDataDistribution(i, cl); final ChannelSelector<SerializationDelegate<T>> oe; if (compFactory == null) { oe = new OutputEmitter<T>(strategy); } else if (dataDist == null){ final TypeComparator<T> comparator = compFactory.createComparator(); oe = new OutputEmitter<T>(strategy, comparator); } else { final TypeComparator<T> comparator = compFactory.createComparator(); oe = new OutputEmitter<T>(strategy, comparator, dataDist); } if (task instanceof AbstractTask) { writers.add(new RecordWriter<SerializationDelegate<T>>((AbstractTask) task, oe)); } else if (task instanceof AbstractInputTask<?>) { writers.add(new RecordWriter<SerializationDelegate<T>>((AbstractInputTask<?>) task, oe)); } } if (eventualOutputs != null) { eventualOutputs.addAll(writers); } return new OutputCollector<T>(writers, serializerFactory.getSerializer()); } } /** * Creates a writer for each output. Creates an OutputCollector which forwards its input to all writers. * The output collector applies the configured shipping strategy. */ @SuppressWarnings("unchecked") public static <T> Collector<T> initOutputs(AbstractInvokable nepheleTask, ClassLoader cl, TaskConfig config, List<ChainedDriver<?, ?>> chainedTasksTarget, List<BufferWriter> eventualOutputs) throws Exception { final int numOutputs = config.getNumOutputs(); // check whether we got any chained tasks final int numChained = config.getNumberOfChainedStubs(); if (numChained > 0) { // got chained stubs. that means that this one may only have a single forward connection if (numOutputs != 1 || config.getOutputShipStrategy(0) != ShipStrategyType.FORWARD) { throw new RuntimeException("Plan Generation Bug: Found a chained stub that is not connected via an only forward connection."); } // instantiate each task @SuppressWarnings("rawtypes") Collector previous = null; for (int i = numChained - 1; i >= 0; --i) { // get the task first final ChainedDriver<?, ?> ct; try { Class<? extends ChainedDriver<?, ?>> ctc = config.getChainedTask(i); ct = ctc.newInstance(); } catch (Exception ex) { throw new RuntimeException("Could not instantiate chained task driver.", ex); } // get the configuration for the task final TaskConfig chainedStubConf = config.getChainedStubConfig(i); final String taskName = config.getChainedTaskName(i); if (i == numChained -1) { // last in chain, instantiate the output collector for this task previous = getOutputCollector(nepheleTask, chainedStubConf, cl, eventualOutputs, chainedStubConf.getNumOutputs()); } ct.setup(chainedStubConf, taskName, previous, nepheleTask, cl); chainedTasksTarget.add(0, ct); previous = ct; } // the collector of the first in the chain is the collector for the nephele task return (Collector<T>) previous; } // else // instantiate the output collector the default way from this configuration return getOutputCollector(nepheleTask , config, cl, eventualOutputs, numOutputs); } public static void initOutputWriters(List<BufferWriter> writers) { for (BufferWriter writer : writers) { ((RecordWriter<?>) writer).initializeSerializers(); } } // -------------------------------------------------------------------------------------------- // User Code LifeCycle // -------------------------------------------------------------------------------------------- /** * Opens the given stub using its {@link Function#open(Configuration)} method. If the open call produces * an exception, a new exception with a standard error message is created, using the encountered exception * as its cause. * * @param stub The user code instance to be opened. * @param parameters The parameters supplied to the user code. * * @throws Exception Thrown, if the user code's open method produces an exception. */ public static void openUserCode(Function stub, Configuration parameters) throws Exception { try { stub.open(parameters); } catch (Throwable t) { throw new Exception("The user defined 'open(Configuration)' method in " + stub.getClass().toString() + " caused an exception: " + t.getMessage(), t); } } /** * Closes the given stub using its {@link Function#close()} method. If the close call produces * an exception, a new exception with a standard error message is created, using the encountered exception * as its cause. * * @param stub The user code instance to be closed. * * @throws Exception Thrown, if the user code's close method produces an exception. */ public static void closeUserCode(Function stub) throws Exception { try { stub.close(); } catch (Throwable t) { throw new Exception("The user defined 'close()' method caused an exception: " + t.getMessage(), t); } } // -------------------------------------------------------------------------------------------- // Chained Task LifeCycle // -------------------------------------------------------------------------------------------- /** * Opens all chained tasks, in the order as they are stored in the array. The opening process * creates a standardized log info message. * * @param tasks The tasks to be opened. * @param parent The parent task, used to obtain parameters to include in the log message. * @throws Exception Thrown, if the opening encounters an exception. */ public static void openChainedTasks(List<ChainedDriver<?, ?>> tasks, AbstractInvokable parent) throws Exception { // start all chained tasks for (int i = 0; i < tasks.size(); i++) { final ChainedDriver<?, ?> task = tasks.get(i); if (LOG.isDebugEnabled()) { LOG.debug(constructLogString("Start task code", task.getTaskName(), parent)); } task.openTask(); } } /** * Closes all chained tasks, in the order as they are stored in the array. The closing process * creates a standardized log info message. * * @param tasks The tasks to be closed. * @param parent The parent task, used to obtain parameters to include in the log message. * @throws Exception Thrown, if the closing encounters an exception. */ public static void closeChainedTasks(List<ChainedDriver<?, ?>> tasks, AbstractInvokable parent) throws Exception { for (int i = 0; i < tasks.size(); i++) { final ChainedDriver<?, ?> task = tasks.get(i); task.closeTask(); if (LOG.isDebugEnabled()) { LOG.debug(constructLogString("Finished task code", task.getTaskName(), parent)); } } } /** * Cancels all tasks via their {@link ChainedDriver#cancelTask()} method. Any occurring exception * and error is suppressed, such that the canceling method of every task is invoked in all cases. * * @param tasks The tasks to be canceled. */ public static void cancelChainedTasks(List<ChainedDriver<?, ?>> tasks) { for (int i = 0; i < tasks.size(); i++) { try { tasks.get(i).cancelTask(); } catch (Throwable t) {} } } // -------------------------------------------------------------------------------------------- // Miscellaneous Utilities // -------------------------------------------------------------------------------------------- /** * Instantiates a user code class from is definition in the task configuration. * The class is instantiated without arguments using the null-ary constructor. Instantiation * will fail if this constructor does not exist or is not public. * * @param <T> The generic type of the user code class. * @param config The task configuration containing the class description. * @param cl The class loader to be used to load the class. * @param superClass The super class that the user code class extends or implements, for type checking. * * @return An instance of the user code class. */ public static <T> T instantiateUserCode(TaskConfig config, ClassLoader cl, Class<? super T> superClass) { try { T stub = config.<T>getStubWrapper(cl).getUserCodeObject(superClass, cl); // check if the class is a subclass, if the check is required if (superClass != null && !superClass.isAssignableFrom(stub.getClass())) { throw new RuntimeException("The class '" + stub.getClass().getName() + "' is not a subclass of '" + superClass.getName() + "' as is required."); } return stub; } catch (ClassCastException ccex) { throw new RuntimeException("The UDF class is not a proper subclass of " + superClass.getName(), ccex); } } private static int[] asArray(List<Integer> list) { int[] a = new int[list.size()]; int i = 0; for (int val : list) { a[i++] = val; } return a; } }