/*********************************************************************************************************************** * Copyright (C) 2010-2013 by the Stratosphere project (http://stratosphere.eu) * * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on * an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the * specific language governing permissions and limitations under the License. **********************************************************************************************************************/ package eu.stratosphere.compiler.dag; import java.util.ArrayList; import java.util.Collections; import java.util.HashSet; import java.util.List; import java.util.Map; import java.util.Set; import com.google.common.collect.Sets; import eu.stratosphere.api.common.operators.Operator; import eu.stratosphere.api.common.operators.SingleInputOperator; import eu.stratosphere.api.common.operators.SingleInputSemanticProperties; import eu.stratosphere.api.common.operators.util.FieldSet; import eu.stratosphere.compiler.CompilerException; import eu.stratosphere.compiler.PactCompiler; import eu.stratosphere.compiler.costs.CostEstimator; import eu.stratosphere.compiler.dataproperties.GlobalProperties; import eu.stratosphere.compiler.dataproperties.InterestingProperties; import eu.stratosphere.compiler.dataproperties.LocalProperties; import eu.stratosphere.compiler.dataproperties.RequestedGlobalProperties; import eu.stratosphere.compiler.dataproperties.RequestedLocalProperties; import eu.stratosphere.compiler.operators.OperatorDescriptorSingle; import eu.stratosphere.compiler.plan.Channel; import eu.stratosphere.compiler.plan.NamedChannel; import eu.stratosphere.compiler.plan.PlanNode; import eu.stratosphere.compiler.plan.SingleInputPlanNode; import eu.stratosphere.compiler.util.NoOpUnaryUdfOp; import eu.stratosphere.configuration.Configuration; import eu.stratosphere.pact.runtime.shipping.ShipStrategyType; import eu.stratosphere.pact.runtime.task.util.LocalStrategy; import eu.stratosphere.util.Visitor; /** * A node in the optimizer's program representation for a PACT with a single input. * * This class contains all the generic logic for branch handling, interesting properties, * and candidate plan enumeration. The subclasses for specific operators simply add logic * for cost estimates and specify possible strategies for their realization. */ public abstract class SingleInputNode extends OptimizerNode { protected final FieldSet keys; // The set of key fields protected PactConnection inConn; // the input of the node // -------------------------------------------------------------------------------------------- /** * Creates a new node with a single input for the optimizer plan. * * @param pactContract The PACT that the node represents. */ protected SingleInputNode(SingleInputOperator<?, ?, ?> pactContract) { super(pactContract); int[] k = pactContract.getKeyColumns(0); this.keys = k == null || k.length == 0 ? null : new FieldSet(k); } protected SingleInputNode(FieldSet keys) { super(NoOpUnaryUdfOp.INSTANCE); this.keys = keys; } protected SingleInputNode() { super(NoOpUnaryUdfOp.INSTANCE); this.keys = null; } protected SingleInputNode(SingleInputNode toCopy) { super(toCopy); this.keys = toCopy.keys; } // -------------------------------------------------------------------------------------------- @Override public SingleInputOperator<?, ?, ?> getPactContract() { return (SingleInputOperator<?, ?, ?>) super.getPactContract(); } /** * Gets the input of this operator. * * @return The input. */ public PactConnection getIncomingConnection() { return this.inConn; } /** * Sets the <tt>PactConnection</tt> through which this node receives its input. * * @param inConn The input connection to set. */ public void setIncomingConnection(PactConnection inConn) { this.inConn = inConn; } /** * Gets the predecessor of this node. * * @return The predecessor of this node. */ public OptimizerNode getPredecessorNode() { if (this.inConn != null) { return this.inConn.getSource(); } else { return null; } } @Override public List<PactConnection> getIncomingConnections() { return Collections.singletonList(this.inConn); } @Override public boolean isFieldConstant(int input, int fieldNumber) { if (input != 0) { throw new IndexOutOfBoundsException(); } SingleInputOperator<?, ?, ?> c = getPactContract(); SingleInputSemanticProperties semanticProperties = c.getSemanticProperties(); if (semanticProperties != null) { FieldSet fs; if ((fs = semanticProperties.getForwardedField(fieldNumber)) != null) { return fs.contains(fieldNumber); } } return false; } @Override public void setInput(Map<Operator<?>, OptimizerNode> contractToNode) throws CompilerException { // see if an internal hint dictates the strategy to use final Configuration conf = getPactContract().getParameters(); final String shipStrategy = conf.getString(PactCompiler.HINT_SHIP_STRATEGY, null); final ShipStrategyType preSet; if (shipStrategy != null) { if (shipStrategy.equalsIgnoreCase(PactCompiler.HINT_SHIP_STRATEGY_REPARTITION_HASH)) { preSet = ShipStrategyType.PARTITION_HASH; } else if (shipStrategy.equalsIgnoreCase(PactCompiler.HINT_SHIP_STRATEGY_REPARTITION_RANGE)) { preSet = ShipStrategyType.PARTITION_RANGE; } else if (shipStrategy.equalsIgnoreCase(PactCompiler.HINT_SHIP_STRATEGY_FORWARD)) { preSet = ShipStrategyType.FORWARD; } else if (shipStrategy.equalsIgnoreCase(PactCompiler.HINT_SHIP_STRATEGY_REPARTITION)) { preSet = ShipStrategyType.PARTITION_RANDOM; } else { throw new CompilerException("Unrecognized ship strategy hint: " + shipStrategy); } } else { preSet = null; } // get the predecessor node Operator<?> children = ((SingleInputOperator<?, ?, ?>) getPactContract()).getInput(); OptimizerNode pred; PactConnection conn; if (children == null) { throw new CompilerException("Error: Node for '" + getPactContract().getName() + "' has no input."); } else { pred = contractToNode.get(children); conn = new PactConnection(pred, this); if (preSet != null) { conn.setShipStrategy(preSet); } } // create the connection and add it setIncomingConnection(conn); pred.addOutgoingConnection(conn); } // -------------------------------------------------------------------------------------------- // Properties and Optimization // -------------------------------------------------------------------------------------------- protected abstract List<OperatorDescriptorSingle> getPossibleProperties(); @Override public boolean isMemoryConsumer() { for (OperatorDescriptorSingle dps : getPossibleProperties()) { if (dps.getStrategy().firstDam().isMaterializing()) { return true; } for (RequestedLocalProperties rlp : dps.getPossibleLocalProperties()) { if (!rlp.isTrivial()) { return true; } } } return false; } @Override public void computeInterestingPropertiesForInputs(CostEstimator estimator) { // get what we inherit and what is preserved by our user code final InterestingProperties props = getInterestingProperties().filterByCodeAnnotations(this, 0); // add all properties relevant to this node for (OperatorDescriptorSingle dps : getPossibleProperties()) { for (RequestedGlobalProperties gp : dps.getPossibleGlobalProperties()) { props.addGlobalProperties(gp); } for (RequestedLocalProperties lp : dps.getPossibleLocalProperties()) { props.addLocalProperties(lp); } } this.inConn.setInterestingProperties(props); for (PactConnection conn : getBroadcastConnections()) { conn.setInterestingProperties(new InterestingProperties()); } } @Override public List<PlanNode> getAlternativePlans(CostEstimator estimator) { // check if we have a cached version if (this.cachedPlans != null) { return this.cachedPlans; } // calculate alternative sub-plans for predecessor final List<? extends PlanNode> subPlans = getPredecessorNode().getAlternativePlans(estimator); final Set<RequestedGlobalProperties> intGlobal = this.inConn.getInterestingProperties().getGlobalProperties(); // calculate alternative sub-plans for broadcast inputs final List<Set<? extends NamedChannel>> broadcastPlanChannels = new ArrayList<Set<? extends NamedChannel>>(); List<PactConnection> broadcastConnections = getBroadcastConnections(); List<String> broadcastConnectionNames = getBroadcastConnectionNames(); for (int i = 0; i < broadcastConnections.size(); i++ ) { PactConnection broadcastConnection = broadcastConnections.get(i); String broadcastConnectionName = broadcastConnectionNames.get(i); List<PlanNode> broadcastPlanCandidates = broadcastConnection.getSource().getAlternativePlans(estimator); // wrap the plan candidates in named channels HashSet<NamedChannel> broadcastChannels = new HashSet<NamedChannel>(broadcastPlanCandidates.size()); for (PlanNode plan: broadcastPlanCandidates) { final NamedChannel c = new NamedChannel(broadcastConnectionName, plan); c.setShipStrategy(ShipStrategyType.BROADCAST); broadcastChannels.add(c); } broadcastPlanChannels.add(broadcastChannels); } final RequestedGlobalProperties[] allValidGlobals; { Set<RequestedGlobalProperties> pairs = new HashSet<RequestedGlobalProperties>(); for (OperatorDescriptorSingle ods : getPossibleProperties()) { pairs.addAll(ods.getPossibleGlobalProperties()); } allValidGlobals = (RequestedGlobalProperties[]) pairs.toArray(new RequestedGlobalProperties[pairs.size()]); } final ArrayList<PlanNode> outputPlans = new ArrayList<PlanNode>(); final int dop = getDegreeOfParallelism(); final int subPerInstance = getSubtasksPerInstance(); final int inDop = getPredecessorNode().getDegreeOfParallelism(); final int inSubPerInstance = getPredecessorNode().getSubtasksPerInstance(); final int numInstances = dop / subPerInstance + (dop % subPerInstance == 0 ? 0 : 1); final int inNumInstances = inDop / inSubPerInstance + (inDop % inSubPerInstance == 0 ? 0 : 1); final boolean globalDopChange = numInstances != inNumInstances; final boolean localDopChange = numInstances == inNumInstances & subPerInstance != inSubPerInstance; // create all candidates for (PlanNode child : subPlans) { if (this.inConn.getShipStrategy() == null) { // pick the strategy ourselves for (RequestedGlobalProperties igps: intGlobal) { final Channel c = new Channel(child, this.inConn.getMaterializationMode()); igps.parameterizeChannel(c, globalDopChange, localDopChange); // if the DOP changed, make sure that we cancel out properties, unless the // ship strategy preserves/establishes them even under changing DOPs if (globalDopChange && !c.getShipStrategy().isNetworkStrategy()) { c.getGlobalProperties().reset(); } if (localDopChange && !(c.getShipStrategy().isNetworkStrategy() || c.getShipStrategy().compensatesForLocalDOPChanges())) { c.getGlobalProperties().reset(); } // check whether we meet any of the accepted properties // we may remove this check, when we do a check to not inherit // requested global properties that are incompatible with all possible // requested properties for (RequestedGlobalProperties rgps: allValidGlobals) { if (rgps.isMetBy(c.getGlobalProperties())) { addLocalCandidates(c, broadcastPlanChannels, igps, outputPlans, estimator); break; } } } } else { // hint fixed the strategy final Channel c = new Channel(child, this.inConn.getMaterializationMode()); if (this.keys != null) { c.setShipStrategy(this.inConn.getShipStrategy(), this.keys.toFieldList()); } else { c.setShipStrategy(this.inConn.getShipStrategy()); } if (globalDopChange) { c.adjustGlobalPropertiesForFullParallelismChange(); } else if (localDopChange) { c.adjustGlobalPropertiesForLocalParallelismChange(); } // check whether we meet any of the accepted properties for (RequestedGlobalProperties rgps: allValidGlobals) { if (rgps.isMetBy(c.getGlobalProperties())) { addLocalCandidates(c, broadcastPlanChannels, rgps, outputPlans, estimator); break; } } } } // cost and prune the plans for (PlanNode node : outputPlans) { estimator.costOperator(node); } prunePlanAlternatives(outputPlans); outputPlans.trimToSize(); this.cachedPlans = outputPlans; return outputPlans; } protected void addLocalCandidates(Channel template, List<Set<? extends NamedChannel>> broadcastPlanChannels, RequestedGlobalProperties rgps, List<PlanNode> target, CostEstimator estimator) { final LocalProperties lp = template.getLocalPropertiesAfterShippingOnly(); for (RequestedLocalProperties ilp : this.inConn.getInterestingProperties().getLocalProperties()) { final Channel in = template.clone(); if (ilp.isMetBy(lp)) { in.setLocalStrategy(LocalStrategy.NONE); } else { ilp.parameterizeChannel(in); } // instantiate a candidate, if the instantiated local properties meet one possible local property set for (OperatorDescriptorSingle dps: getPossibleProperties()) { for (RequestedLocalProperties ilps : dps.getPossibleLocalProperties()) { if (ilps.isMetBy(in.getLocalProperties())) { instantiateCandidate(dps, in, broadcastPlanChannels, target, estimator, rgps, ilp); break; } } } } } protected void instantiateCandidate(OperatorDescriptorSingle dps, Channel in, List<Set<? extends NamedChannel>> broadcastPlanChannels, List<PlanNode> target, CostEstimator estimator, RequestedGlobalProperties globPropsReq, RequestedLocalProperties locPropsReq) { final PlanNode inputSource = in.getSource(); for (List<NamedChannel> broadcastChannelsCombination: Sets.cartesianProduct(broadcastPlanChannels)) { boolean validCombination = true; // check whether the broadcast inputs use the same plan candidate at the branching point for (int i = 0; i < broadcastChannelsCombination.size(); i++) { NamedChannel nc = broadcastChannelsCombination.get(i); PlanNode bcSource = nc.getSource(); // check branch compatibility against input if (!areBranchCompatible(bcSource, inputSource)) { validCombination = false; break; } // check branch compatibility against all other broadcast variables for (int k = 0; k < i; k++) { PlanNode otherBcSource = broadcastChannelsCombination.get(k).getSource(); if (!areBranchCompatible(bcSource, otherBcSource)) { validCombination = false; break; } } } if (!validCombination) { continue; } final SingleInputPlanNode node = dps.instantiate(in, this); node.setBroadcastInputs(broadcastChannelsCombination); // compute how the strategy affects the properties GlobalProperties gProps = in.getGlobalProperties().clone(); LocalProperties lProps = in.getLocalProperties().clone(); gProps = dps.computeGlobalProperties(gProps); lProps = dps.computeLocalProperties(lProps); // filter by the user code field copies gProps = gProps.filterByNodesConstantSet(this, 0); lProps = lProps.filterByNodesConstantSet(this, 0); // apply node.initProperties(gProps, lProps); node.updatePropertiesWithUniqueSets(getUniqueFields()); target.add(node); } } // -------------------------------------------------------------------------------------------- // Branch Handling // -------------------------------------------------------------------------------------------- @Override public void computeUnclosedBranchStack() { if (this.openBranches != null) { return; } addClosedBranches(getPredecessorNode().closedBranchingNodes); List<UnclosedBranchDescriptor> fromInput = getPredecessorNode().getBranchesForParent(this.inConn); // handle the data flow branching for the broadcast inputs List<UnclosedBranchDescriptor> result = computeUnclosedBranchStackForBroadcastInputs(fromInput); this.openBranches = (result == null || result.isEmpty()) ? Collections.<UnclosedBranchDescriptor>emptyList() : result; } // -------------------------------------------------------------------------------------------- // Miscellaneous // -------------------------------------------------------------------------------------------- @Override public void accept(Visitor<OptimizerNode> visitor) { if (visitor.preVisit(this)) { if (getPredecessorNode() != null) { getPredecessorNode().accept(visitor); } else { throw new CompilerException(); } for (PactConnection connection : getBroadcastConnections()) { connection.getSource().accept(visitor); } visitor.postVisit(this); } } }