/* * @(#)String.java 1.145 06/10/10 * * Copyright 1990-2008 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License version * 2 only, as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 for more details (a copy is * included at /legal/license.txt). * * You should have received a copy of the GNU General Public License * version 2 along with this work; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa * Clara, CA 95054 or visit www.sun.com if you need additional * information or have any questions. * */ package java.lang; import sun.misc.CVM; import java.io.ObjectStreamClass; import java.io.ObjectStreamField; import java.io.UnsupportedEncodingException; import java.util.ArrayList; import java.util.Comparator; import java.util.Locale; /** * The <code>String</code> class represents character strings. All * string literals in Java programs, such as <code>"abc"</code>, are * implemented as instances of this class. * <p> * Strings are constant; their values cannot be changed after they * are created. String buffers support mutable strings. * Because String objects are immutable they can be shared. For example: * <p><blockquote><pre> * String str = "abc"; * </pre></blockquote><p> * is equivalent to: * <p><blockquote><pre> * char data[] = {'a', 'b', 'c'}; * String str = new String(data); * </pre></blockquote><p> * Here are some more examples of how strings can be used: * <p><blockquote><pre> * System.out.println("abc"); * String cde = "cde"; * System.out.println("abc" + cde); * String c = "abc".substring(2,3); * String d = cde.substring(1, 2); * </pre></blockquote> * <p> * The class <code>String</code> includes methods for examining * individual characters of the sequence, for comparing strings, for * searching strings, for extracting substrings, and for creating a * copy of a string with all characters translated to uppercase or to * lowercase. Case mapping relies heavily on the information provided * by the Unicode Consortium's Unicode 3.0 specification. The * specification's UnicodeData.txt and SpecialCasing.txt files are * used extensively to provide case mapping. * <p> * The Java language provides special support for the string * concatenation operator ( + ), and for conversion of * other objects to strings. String concatenation is implemented * through the <code>StringBuffer</code> class and its * <code>append</code> method. * String conversions are implemented through the method * <code>toString</code>, defined by <code>Object</code> and * inherited by all classes in Java. For additional information on * string concatenation and conversion, see Gosling, Joy, and Steele, * <i>The Java Language Specification</i>. * * <p> Unless otherwise noted, passing a <tt>null</tt> argument to a constructor * or method in this class will cause a {@link NullPointerException} to be * thrown. * * @author Lee Boynton * @author Arthur van Hoff * @version 1.152, 02/01/03 * @see java.lang.Object#toString() * @see java.lang.StringBuffer * @see java.lang.StringBuffer#append(boolean) * @see java.lang.StringBuffer#append(char) * @see java.lang.StringBuffer#append(char[]) * @see java.lang.StringBuffer#append(char[], int, int) * @see java.lang.StringBuffer#append(double) * @see java.lang.StringBuffer#append(float) * @see java.lang.StringBuffer#append(int) * @see java.lang.StringBuffer#append(long) * @see java.lang.StringBuffer#append(java.lang.Object) * @see java.lang.StringBuffer#append(java.lang.String) * @since JDK1.0 */ public final class String implements java.io.Serializable, Comparable, CharSequence { /** The value is used for character storage. */ private char value[]; /** The offset is the first index of the storage that is used. */ private int offset; /** The count is the number of characters in the String. */ private int count; /** use serialVersionUID from JDK 1.0.2 for interoperability */ private static final long serialVersionUID = -6849794470754667710L; /** * Class String is special cased within the Serialization Stream Protocol. * * A String instance is written intially into an ObjectOutputStream in the * following format: * <pre> * <code>TC_STRING</code> (utf String) * </pre> * The String is written by method <code>DataOutput.writeUTF</code>. * A new handle is generated to refer to all future references to the * string instance within the stream. */ private static final ObjectStreamField[] serialPersistentFields = new ObjectStreamField[0]; /** * Initializes a newly created <code>String</code> object so that it * represents an empty character sequence. Note that use of this * constructor is unnecessary since Strings are immutable. */ public String() { value = new char[0]; } /** * Initializes a newly created <code>String</code> object so that it * represents the same sequence of characters as the argument; in other * words, the newly created string is a copy of the argument string. Unless * an explicit copy of <code>original</code> is needed, use of this * constructor is unnecessary since Strings are immutable. * * @param original a <code>String</code>. */ public String(String original) { this.count = original.count; if (original.value.length > this.count) { // The array representing the String is bigger than the new // String itself. Perhaps this constructor is being called // in order to trim the baggage, so make a copy of the array. this.value = new char[this.count]; CVM.copyCharArray(original.value, original.offset, this.value, 0, this.count); } else { // The array representing the String is the same // size as the String, so no point in making a copy. this.value = original.value; } } /** * Allocates a new <code>String</code> so that it represents the * sequence of characters currently contained in the character array * argument. The contents of the character array are copied; subsequent * modification of the character array does not affect the newly created * string. * * @param value the initial value of the string. */ public String(char value[]) { this.count = value.length; this.value = new char[count]; CVM.copyCharArray(value, 0, this.value, 0, count); } /** * Allocates a new <code>String</code> that contains characters from * a subarray of the character array argument. The <code>offset</code> * argument is the index of the first character of the subarray and * the <code>count</code> argument specifies the length of the * subarray. The contents of the subarray are copied; subsequent * modification of the character array does not affect the newly * created string. * * @param value array that is the source of characters. * @param offset the initial offset. * @param count the length. * @exception IndexOutOfBoundsException if the <code>offset</code> * and <code>count</code> arguments index characters outside * the bounds of the <code>value</code> array. */ public String(char value[], int offset, int count) { if (offset < 0) { throw new StringIndexOutOfBoundsException(offset); } if (count < 0) { throw new StringIndexOutOfBoundsException(count); } // Note: offset or count might be near -1>>>1. if (offset > value.length - count) { throw new StringIndexOutOfBoundsException(offset + count); } this.value = new char[count]; this.count = count; CVM.copyCharArray(value, offset, this.value, 0, count); } /** * Allocates a new <code>String</code> constructed from a subarray * of an array of 8-bit integer values. * <p> * The <code>offset</code> argument is the index of the first byte * of the subarray, and the <code>count</code> argument specifies the * length of the subarray. * <p> * Each <code>byte</code> in the subarray is converted to a * <code>char</code> as specified in the method above. * * deprecated This method does not properly convert bytes into characters. * As of JDK 1.1, the preferred way to do this is via the * <code>String</code> constructors that take a charset name or that use * the platform's default charset. * * param ascii the bytes to be converted to characters. * param hibyte the top 8 bits of each 16-bit Unicode character. * param offset the initial offset. * param count the length. * exception IndexOutOfBoundsException if the <code>offset</code> * or <code>count</code> argument is invalid. * @see java.lang.String#String(byte[], int) * @see java.lang.String#String(byte[], int, int, java.lang.String) * @see java.lang.String#String(byte[], int, int) * @see java.lang.String#String(byte[], java.lang.String) * @see java.lang.String#String(byte[]) */ /* public String(byte ascii[], int hibyte, int offset, int count) { //checkBounds(ascii, offset, count); char value[] = new char[count]; this.count = count; this.value = value; if (hibyte == 0) { for (int i = count ; i-- > 0 ;) { value[i] = (char) (ascii[i + offset] & 0xff); } } else { hibyte <<= 8; for (int i = count ; i-- > 0 ;) { value[i] = (char) (hibyte | (ascii[i + offset] & 0xff)); } } } */ /** * Allocates a new <code>String</code> containing characters * constructed from an array of 8-bit integer values. Each character * <i>c</i>in the resulting string is constructed from the * corresponding component <i>b</i> in the byte array such that: * <p><blockquote><pre> * <b><i>c</i></b> == (char)(((hibyte & 0xff) << 8) * | (<b><i>b</i></b> & 0xff)) * </pre></blockquote> * * deprecated This method does not properly convert bytes into characters. * As of JDK 1.1, the preferred way to do this is via the * <code>String</code> constructors that take a charset name or * that use the platform's default charset. * * @param ascii the bytes to be converted to characters. * @param hibyte the top 8 bits of each 16-bit Unicode character. * @see java.lang.String#String(byte[], int, int, java.lang.String) * @see java.lang.String#String(byte[], int, int) * @see java.lang.String#String(byte[], java.lang.String) * @see java.lang.String#String(byte[]) */ /* public String(byte ascii[], int hibyte) { this(ascii, hibyte, 0, ascii.length); } */ /* Common private utility method used to bounds check the byte array * and requested offset & length values used by the String(byte[],..) * constructors. */ private static void checkBounds(byte[] bytes, int offset, int length) { if (length < 0) throw new StringIndexOutOfBoundsException(length); if (offset < 0) throw new StringIndexOutOfBoundsException(offset); if (offset > bytes.length - length) throw new StringIndexOutOfBoundsException(offset + length); } /** * Constructs a new <tt>String</tt> by decoding the specified subarray of * bytes using the specified charset. The length of the new * <tt>String</tt> is a function of the charset, and hence may not be equal * to the length of the subarray. * * <p> The behavior of this constructor when the given bytes are not valid * in the given charset is unspecified. * * @param bytes the bytes to be decoded into characters * @param offset the index of the first byte to decode * @param length the number of bytes to decode * @param charsetName the name of a supported encoding * * @throws UnsupportedEncodingException * if the named charset is not supported * @throws IndexOutOfBoundsException * if the <tt>offset</tt> and <tt>length</tt> arguments * index characters outside the bounds of the <tt>bytes</tt> * array * @since JDK1.1 */ public String(byte bytes[], int offset, int length, String charsetName) throws UnsupportedEncodingException { if (charsetName == null) throw new NullPointerException("charsetName"); checkBounds(bytes, offset, length); value = StringCoding.decode(charsetName, bytes, offset, length); count = value.length; } /** * Constructs a new <tt>String</tt> by decoding the specified array of * bytes using the specified charset. The length of the new * <tt>String</tt> is a function of the charset, and hence may not be equal * to the length of the byte array. * * <p> The behavior of this constructor when the given bytes are not valid * in the given charset is unspecified. * * @param bytes the bytes to be decoded into characters * @param charsetName the name of a supported encoding * * @exception UnsupportedEncodingException * If the named charset is not supported * @since JDK1.1 */ public String(byte bytes[], String charsetName) throws UnsupportedEncodingException { this(bytes, 0, bytes.length, charsetName); } /** * Constructs a new <tt>String</tt> by decoding the specified subarray of * bytes using the platform's default charset. The length of the new * <tt>String</tt> is a function of the charset, and hence may not be equal * to the length of the subarray. * * <p> The behavior of this constructor when the given bytes are not valid * in the default charset is unspecified. * * @param bytes the bytes to be decoded into characters * @param offset the index of the first byte to decode * @param length the number of bytes to decode * @throws IndexOutOfBoundsException * if the <code>offset</code> and the <code>length</code> * arguments index characters outside the bounds of the * <code>bytes</code> array * @since JDK1.1 */ public String(byte bytes[], int offset, int length) { checkBounds(bytes, offset, length); value = StringCoding.decode(bytes, offset, length); count = value.length; } /** * Constructs a new <tt>String</tt> by decoding the specified array of * bytes using the platform's default charset. The length of the new * <tt>String</tt> is a function of the charset, and hence may not be equal * to the length of the byte array. * * <p> The behavior of this constructor when the given bytes are not valid * in the default charset is unspecified. * * @param bytes the bytes to be decoded into characters * @since JDK1.1 */ public String(byte bytes[]) { this(bytes, 0, bytes.length); } /** * Allocates a new string that contains the sequence of characters * currently contained in the string buffer argument. The contents of * the string buffer are copied; subsequent modification of the string * buffer does not affect the newly created string. * * @param buffer a <code>StringBuffer</code>. */ public String (StringBuffer buffer) { synchronized(buffer) { buffer.setShared(); this.value = buffer.getValue(); this.offset = 0; this.count = buffer.lengthNoSync(); } } private void initSimpleSync(StringBuffer buffer) { if (buffer != null && CVM.simpleLockGrab(buffer)) { /* Note, method calls are made below, which is usualy a no no * after calling simpleLockGrab(). However, this method is marked * as CVMJIT_NEEDS_TO_INLINE, which will only allow this method * to be compiled if the simple method calls below can also * be inlined. */ buffer.setShared(); this.value = buffer.getValue(); this.offset = 0; this.count = buffer.lengthNoSync(); CVM.simpleLockRelease(buffer); return; } initSync(buffer); } private void initSync(StringBuffer buffer) { synchronized(buffer) { buffer.setShared(); this.value = buffer.getValue(); this.offset = 0; this.count = buffer.lengthNoSync(); } } // Package private constructor which shares value array for speed. String(int offset, int count, char value[]) { this.value = value; this.offset = offset; this.count = count; } /** * Returns the length of this string. * The length is equal to the number of 16-bit * Unicode characters in the string. * * @return the length of the sequence of characters represented by this * object. */ public int length() { return count; } /** * Returns the character at the specified index. An index ranges * from <code>0</code> to <code>length() - 1</code>. The first character * of the sequence is at index <code>0</code>, the next at index * <code>1</code>, and so on, as for array indexing. * * @param index the index of the character. * @return the character at the specified index of this string. * The first character is at index <code>0</code>. * @exception IndexOutOfBoundsException if the <code>index</code> * argument is negative or not less than the length of this * string. */ public char charAt(int index) { if ((index < 0) || (index >= count)) { throw new StringIndexOutOfBoundsException(index); } return value[index + offset]; } /** * Copies characters from this string into the destination character * array. * <p> * The first character to be copied is at index <code>srcBegin</code>; * the last character to be copied is at index <code>srcEnd-1</code> * (thus the total number of characters to be copied is * <code>srcEnd-srcBegin</code>). The characters are copied into the * subarray of <code>dst</code> starting at index <code>dstBegin</code> * and ending at index: * <p><blockquote><pre> * dstbegin + (srcEnd-srcBegin) - 1 * </pre></blockquote> * * @param srcBegin index of the first character in the string * to copy. * @param srcEnd index after the last character in the string * to copy. * @param dst the destination array. * @param dstBegin the start offset in the destination array. * @exception IndexOutOfBoundsException If any of the following * is true: * <ul><li><code>srcBegin</code> is negative. * <li><code>srcBegin</code> is greater than <code>srcEnd</code> * <li><code>srcEnd</code> is greater than the length of this * string * <li><code>dstBegin</code> is negative * <li><code>dstBegin+(srcEnd-srcBegin)</code> is larger than * <code>dst.length</code></ul> */ public native void getChars(int srcBegin, int srcEnd, char dst[], int dstBegin); /* * The original Java version. * * public void getChars(int srcBegin, int srcEnd, char dst[], int dstBegin) { * if (srcBegin < 0) { * throw new StringIndexOutOfBoundsException(srcBegin); * } * if (srcEnd > count) { * throw new StringIndexOutOfBoundsException(srcEnd); * } * if (srcBegin > srcEnd) { * throw new StringIndexOutOfBoundsException(srcEnd - srcBegin); * } * System.arraycopy(value, offset + srcBegin, dst, dstBegin, * srcEnd - srcBegin); * } */ /** * Copies characters from this string into the destination byte * array. Each byte receives the 8 low-order bits of the * corresponding character. The eight high-order bits of each character * are not copied and do not participate in the transfer in any way. * <p> * The first character to be copied is at index <code>srcBegin</code>; * the last character to be copied is at index <code>srcEnd-1</code>. * The total number of characters to be copied is * <code>srcEnd-srcBegin</code>. The characters, converted to bytes, * are copied into the subarray of <code>dst</code> starting at index * <code>dstBegin</code> and ending at index: * <p><blockquote><pre> * dstbegin + (srcEnd-srcBegin) - 1 * </pre></blockquote> * * deprecated This method does not properly convert characters into bytes. * As of JDK 1.1, the preferred way to do this is via the * the <code>getBytes()</code> method, which uses the platform's default * charset. * * @param srcBegin index of the first character in the string * to copy. * @param srcEnd index after the last character in the string * to copy. * @param dst the destination array. * @param dstBegin the start offset in the destination array. * @exception IndexOutOfBoundsException if any of the following * is true: * <ul><li><code>srcBegin</code> is negative * <li><code>srcBegin</code> is greater than <code>srcEnd</code> * <li><code>srcEnd</code> is greater than the length of this * String * <li><code>dstBegin</code> is negative * <li><code>dstBegin+(srcEnd-srcBegin)</code> is larger than * <code>dst.length</code></ul> * public void getBytes(int srcBegin, int srcEnd, byte dst[], int dstBegin) { if (srcBegin < 0) { throw new StringIndexOutOfBoundsException(srcBegin); } if (srcEnd > count) { throw new StringIndexOutOfBoundsException(srcEnd); } if (srcBegin > srcEnd) { throw new StringIndexOutOfBoundsException(srcEnd - srcBegin); } int j = dstBegin; int n = offset + srcEnd; int i = offset + srcBegin; char[] val = value; /* avoid getfield opcode * while (i < n) { dst[j++] = (byte)val[i++]; } } */ /** * Encodes this <tt>String</tt> into a sequence of bytes using the * named charset, storing the result into a new byte array. * * <p> The behavior of this method when this string cannot be encoded in * the given charset is unspecified. * * @param charsetName * the name of a supported encoding * * @return The resultant byte array * * @exception UnsupportedEncodingException * If the named charset is not supported * * @since JDK1.1 */ public byte[] getBytes(String charsetName) throws UnsupportedEncodingException { return StringCoding.encode(charsetName, value, offset, count); } /** * Encodes this <tt>String</tt> into a sequence of bytes using the * platform's default charset, storing the result into a new byte array. * * <p> The behavior of this method when this string cannot be encoded in * the default charset is unspecified. * * @return The resultant byte array * * @since JDK1.1 */ public byte[] getBytes() { return StringCoding.encode(value, offset, count); } /** * Compares this string to the specified object. * The result is <code>true</code> if and only if the argument is not * <code>null</code> and is a <code>String</code> object that represents * the same sequence of characters as this object. * * @param anObject the object to compare this <code>String</code> * against. * @return <code>true</code> if the <code>String </code>are equal; * <code>false</code> otherwise. * @see java.lang.String#compareTo(java.lang.String) * @see java.lang.String#equalsIgnoreCase(java.lang.String) */ public native boolean equals(Object anObject); /* * The original Java version * *public boolean equals(Object anObject) { * if (this == anObject) { * return true; * } * if (anObject instanceof String) { * String anotherString = (String)anObject; * int n = count; * if (n == anotherString.count) { * char v1[] = value; * char v2[] = anotherString.value; * int i = offset; * int j = anotherString.offset; * while (n-- != 0) { * if (v1[i++] != v2[j++]) { * return false; * } * } * return true; * } * } * return false; *} */ /** * Returns <tt>true</tt> if and only if this <tt>String</tt> represents * the same sequence of characters as the specified <tt>StringBuffer</tt>. * * @param sb the <tt>StringBuffer</tt> to compare to. * @return <tt>true</tt> if and only if this <tt>String</tt> represents * the same sequence of characters as the specified * <tt>StringBuffer</tt>, otherwise <tt>false</tt>. * @since 1.4 */ public boolean contentEquals(StringBuffer sb) { synchronized(sb) { if (count != sb.length()) return false; char v1[] = value; char v2[] = sb.getValue(); int i = offset; int j = 0; int n = count; while (n-- != 0) { if (v1[i++] != v2[j++]) return false; } } return true; } /* * The original Java version * *public boolean equals(Object anObject) { * if (this == anObject) { * return true; * } * if (anObject instanceof String) { * String anotherString = (String)anObject; * int n = count; * if (n == anotherString.count) { * char v1[] = value; * char v2[] = anotherString.value; * int i = offset; * int j = anotherString.offset; * while (n-- != 0) { * if (v1[i++] != v2[j++]) { * return false; * } * } * return true; * } * } * return false; *} */ /** * Compares this <code>String</code> to another <code>String</code>, * ignoring case considerations. Two strings are considered equal * ignoring case if they are of the same length, and corresponding * characters in the two strings are equal ignoring case. * <p> * Two characters <code>c1</code> and <code>c2</code> are considered * the same, ignoring case if at least one of the following is true: * <ul><li>The two characters are the same (as compared by the * <code>==</code> operator). * <li>Applying the method {@link java.lang.Character#toUpperCase(char)} * to each character produces the same result. * <li>Applying the method {@link java.lang.Character#toLowerCase(char)} * to each character produces the same result.</ul> * * @param anotherString the <code>String</code> to compare this * <code>String</code> against. * @return <code>true</code> if the argument is not <code>null</code> * and the <code>String</code>s are equal, * ignoring case; <code>false</code> otherwise. * @see #equals(Object) * @see java.lang.Character#toLowerCase(char) * @see java.lang.Character#toUpperCase(char) */ public boolean equalsIgnoreCase(String anotherString) { return (this == anotherString) ? true : (anotherString != null) && (anotherString.count == count) && regionMatches(true, 0, anotherString, 0, count); } /** * Compares two strings lexicographically. * The comparison is based on the Unicode value of each character in * the strings. The character sequence represented by this * <code>String</code> object is compared lexicographically to the * character sequence represented by the argument string. The result is * a negative integer if this <code>String</code> object * lexicographically precedes the argument string. The result is a * positive integer if this <code>String</code> object lexicographically * follows the argument string. The result is zero if the strings * are equal; <code>compareTo</code> returns <code>0</code> exactly when * the {@link #equals(Object)} method would return <code>true</code>. * <p> * This is the definition of lexicographic ordering. If two strings are * different, then either they have different characters at some index * that is a valid index for both strings, or their lengths are different, * or both. If they have different characters at one or more index * positions, let <i>k</i> be the smallest such index; then the string * whose character at position <i>k</i> has the smaller value, as * determined by using the < operator, lexicographically precedes the * other string. In this case, <code>compareTo</code> returns the * difference of the two character values at position <code>k</code> in * the two string -- that is, the value: * <blockquote><pre> * this.charAt(k)-anotherString.charAt(k) * </pre></blockquote> * If there is no index position at which they differ, then the shorter * string lexicographically precedes the longer string. In this case, * <code>compareTo</code> returns the difference of the lengths of the * strings -- that is, the value: * <blockquote><pre> * this.length()-anotherString.length() * </pre></blockquote> * * @param anotherString the <code>String</code> to be compared. * @return the value <code>0</code> if the argument string is equal to * this string; a value less than <code>0</code> if this string * is lexicographically less than the string argument; and a * value greater than <code>0</code> if this string is * lexicographically greater than the string argument. */ public native int compareTo(String anotherString); /* * The Java version of compare() * *public int compareTo(String anotherString) { * int len1 = count; * int len2 = anotherString.count; * int n = Math.min(len1, len2); * char v1[] = value; * char v2[] = anotherString.value; * int i = offset; * int j = anotherString.offset; * * if (i == j) { * int k = i; * int lim = n + i; * while (k < lim) { * char c1 = v1[k]; * char c2 = v2[k]; * if (c1 != c2) { * return c1 - c2; * } * k++; * } * } else { * while (n-- != 0) { * char c1 = v1[i++]; * char c2 = v2[j++]; * if (c1 != c2) { * return c1 - c2; * } * } * } * return len1 - len2; *} */ /** * Compares this String to another Object. If the Object is a String, * this function behaves like <code>compareTo(String)</code>. Otherwise, * it throws a <code>ClassCastException</code> (as Strings are comparable * only to other Strings). * * @param o the <code>Object</code> to be compared. * @return the value <code>0</code> if the argument is a string * lexicographically equal to this string; a value less than * <code>0</code> if the argument is a string lexicographically * greater than this string; and a value greater than * <code>0</code> if the argument is a string lexicographically * less than this string. * @exception <code>ClassCastException</code> if the argument is not a * <code>String</code>. * @see java.lang.Comparable * @since 1.2 */ public int compareTo(Object o) { return compareTo((String)o); } /** * A Comparator that orders <code>String</code> objects as by * <code>compareToIgnoreCase</code>. This comparator is serializable. * <p> * Note that this Comparator does <em>not</em> take locale into account, * and will result in an unsatisfactory ordering for certain locales. * The java.text package provides <em>Collators</em> to allow * locale-sensitive ordering. * * @see java.text.Collator#compare(String, String) * @since 1.2 */ public static final Comparator CASE_INSENSITIVE_ORDER = new CaseInsensitiveComparator(); private static class CaseInsensitiveComparator implements Comparator, java.io.Serializable { // use serialVersionUID from JDK 1.2.2 for interoperability private static final long serialVersionUID = 8575799808933029326L; public int compare(Object o1, Object o2) { String s1 = (String) o1; String s2 = (String) o2; int n1=s1.length(), n2=s2.length(); for (int i1=0, i2=0; i1<n1 && i2<n2; i1++, i2++) { char c1 = s1.charAt(i1); char c2 = s2.charAt(i2); if (c1 != c2) { c1 = Character.toUpperCase(c1); c2 = Character.toUpperCase(c2); if (c1 != c2) { c1 = Character.toLowerCase(c1); c2 = Character.toLowerCase(c2); if (c1 != c2) { return c1 - c2; } } } } return n1 - n2; } } /** * Compares two strings lexicographically, ignoring case * differences. This method returns an integer whose sign is that of * calling <code>compareTo</code> with normalized versions of the strings * where case differences have been eliminated by calling * <code>Character.toLowerCase(Character.toUpperCase(character))</code> on * each character. * <p> * Note that this method does <em>not</em> take locale into account, * and will result in an unsatisfactory ordering for certain locales. * The java.text package provides <em>collators</em> to allow * locale-sensitive ordering. * * @param str the <code>String</code> to be compared. * @return a negative integer, zero, or a positive integer as the * the specified String is greater than, equal to, or less * than this String, ignoring case considerations. * @see java.text.Collator#compare(String, String) * @since 1.2 */ public int compareToIgnoreCase(String str) { return CASE_INSENSITIVE_ORDER.compare(this, str); } /** * Tests if two string regions are equal. * <p> * A substring of this <tt>String</tt> object is compared to a substring * of the argument other. The result is true if these substrings * represent identical character sequences. The substring of this * <tt>String</tt> object to be compared begins at index <tt>toffset</tt> * and has length <tt>len</tt>. The substring of other to be compared * begins at index <tt>ooffset</tt> and has length <tt>len</tt>. The * result is <tt>false</tt> if and only if at least one of the following * is true: * <ul><li><tt>toffset</tt> is negative. * <li><tt>ooffset</tt> is negative. * <li><tt>toffset+len</tt> is greater than the length of this * <tt>String</tt> object. * <li><tt>ooffset+len</tt> is greater than the length of the other * argument. * <li>There is some nonnegative integer <i>k</i> less than <tt>len</tt> * such that: * <tt>this.charAt(toffset+<i>k</i>) != other.charAt(ooffset+<i>k</i>)</tt> * </ul> * * @param toffset the starting offset of the subregion in this string. * @param other the string argument. * @param ooffset the starting offset of the subregion in the string * argument. * @param len the number of characters to compare. * @return <code>true</code> if the specified subregion of this string * exactly matches the specified subregion of the string argument; * <code>false</code> otherwise. */ public boolean regionMatches(int toffset, String other, int ooffset, int len) { char ta[] = value; int to = offset + toffset; char pa[] = other.value; int po = other.offset + ooffset; // Note: toffset, ooffset, or len might be near -1>>>1. if ((ooffset < 0) || (toffset < 0) || (toffset > (long)count - len) || (ooffset > (long)other.count - len)) { return false; } while (len-- > 0) { if (ta[to++] != pa[po++]) { return false; } } return true; } /** * Tests if two string regions are equal. * <p> * A substring of this <tt>String</tt> object is compared to a substring * of the argument <tt>other</tt>. The result is <tt>true</tt> if these * substrings represent character sequences that are the same, ignoring * case if and only if <tt>ignoreCase</tt> is true. The substring of * this <tt>String</tt> object to be compared begins at index * <tt>toffset</tt> and has length <tt>len</tt>. The substring of * <tt>other</tt> to be compared begins at index <tt>ooffset</tt> and * has length <tt>len</tt>. The result is <tt>false</tt> if and only if * at least one of the following is true: * <ul><li><tt>toffset</tt> is negative. * <li><tt>ooffset</tt> is negative. * <li><tt>toffset+len</tt> is greater than the length of this * <tt>String</tt> object. * <li><tt>ooffset+len</tt> is greater than the length of the other * argument. * <li><tt>ignoreCase</tt> is <tt>false</tt> and there is some nonnegative * integer <i>k</i> less than <tt>len</tt> such that: * <blockquote><pre> * this.charAt(toffset+k) != other.charAt(ooffset+k) * </pre></blockquote> * <li><tt>ignoreCase</tt> is <tt>true</tt> and there is some nonnegative * integer <i>k</i> less than <tt>len</tt> such that: * <blockquote><pre> * Character.toLowerCase(this.charAt(toffset+k)) != Character.toLowerCase(other.charAt(ooffset+k)) * </pre></blockquote> * and: * <blockquote><pre> * Character.toUpperCase(this.charAt(toffset+k)) != * Character.toUpperCase(other.charAt(ooffset+k)) * </pre></blockquote> * </ul> * * @param ignoreCase if <code>true</code>, ignore case when comparing * characters. * @param toffset the starting offset of the subregion in this * string. * @param other the string argument. * @param ooffset the starting offset of the subregion in the string * argument. * @param len the number of characters to compare. * @return <code>true</code> if the specified subregion of this string * matches the specified subregion of the string argument; * <code>false</code> otherwise. Whether the matching is exact * or case insensitive depends on the <code>ignoreCase</code> * argument. */ public boolean regionMatches(boolean ignoreCase, int toffset, String other, int ooffset, int len) { char ta[] = value; int to = offset + toffset; char pa[] = other.value; int po = other.offset + ooffset; // Note: toffset, ooffset, or len might be near -1>>>1. if ((ooffset < 0) || (toffset < 0) || (toffset > (long)count - len) || (ooffset > (long)other.count - len)) { return false; } while (len-- > 0) { char c1 = ta[to++]; char c2 = pa[po++]; if (c1 == c2) { continue; } if (ignoreCase) { // If characters don't match but case may be ignored, // try converting both characters to uppercase. // If the results match, then the comparison scan should // continue. char u1 = Character.toUpperCase(c1); char u2 = Character.toUpperCase(c2); if (u1 == u2) { continue; } // Unfortunately, conversion to uppercase does not work properly // for the Georgian alphabet, which has strange rules about case // conversion. So we need to make one last check before // exiting. if (Character.toLowerCase(u1) == Character.toLowerCase(u2)) { continue; } } return false; } return true; } /** * Tests if this string starts with the specified prefix beginning * a specified index. * * @param prefix the prefix. * @param toffset where to begin looking in the string. * @return <code>true</code> if the character sequence represented by the * argument is a prefix of the substring of this object starting * at index <code>toffset</code>; <code>false</code> otherwise. * The result is <code>false</code> if <code>toffset</code> is * negative or greater than the length of this * <code>String</code> object; otherwise the result is the same * as the result of the expression * <pre> * this.subString(toffset).startsWith(prefix) * </pre> */ public boolean startsWith(String prefix, int toffset) { char ta[] = value; int to = offset + toffset; char pa[] = prefix.value; int po = prefix.offset; int pc = prefix.count; // Note: toffset might be near -1>>>1. if ((toffset < 0) || (toffset > count - pc)) { return false; } while (--pc >= 0) { if (ta[to++] != pa[po++]) { return false; } } return true; } /** * Tests if this string starts with the specified prefix. * * @param prefix the prefix. * @return <code>true</code> if the character sequence represented by the * argument is a prefix of the character sequence represented by * this string; <code>false</code> otherwise. * Note also that <code>true</code> will be returned if the * argument is an empty string or is equal to this * <code>String</code> object as determined by the * {@link #equals(Object)} method. * @since 1. 0 */ public boolean startsWith(String prefix) { return startsWith(prefix, 0); } /** * Tests if this string ends with the specified suffix. * * @param suffix the suffix. * @return <code>true</code> if the character sequence represented by the * argument is a suffix of the character sequence represented by * this object; <code>false</code> otherwise. Note that the * result will be <code>true</code> if the argument is the * empty string or is equal to this <code>String</code> object * as determined by the {@link #equals(Object)} method. */ public boolean endsWith(String suffix) { return startsWith(suffix, count - suffix.count); } /** * Returns a hash code for this string. The hash code for a * <code>String</code> object is computed as * <blockquote><pre> * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1] * </pre></blockquote> * using <code>int</code> arithmetic, where <code>s[i]</code> is the * <i>i</i>th character of the string, <code>n</code> is the length of * the string, and <code>^</code> indicates exponentiation. * (The hash value of the empty string is zero.) * * @return a hash code value for this object. */ public native int hashCode(); /* * Original Java version * *public int hashCode() { * int h = 0; * int off = offset; * char val[] = value; * int len = count; * * for (int i = 0; i < len; i++) * h = 31*h + val[off++]; * * * return h; *} */ /** * Returns the index within this string of the first occurrence of the * specified character. If a character with value <code>ch</code> occurs * in the character sequence represented by this <code>String</code> * object, then the index of the first such occurrence is returned -- * that is, the smallest value <i>k</i> such that: * <blockquote><pre> * this.charAt(<i>k</i>) == ch * </pre></blockquote> * is <code>true</code>. If no such character occurs in this string, * then <code>-1</code> is returned. * * @param ch a character. * @return the index of the first occurrence of the character in the * character sequence represented by this object, or * <code>-1</code> if the character does not occur. */ public native int indexOf(int ch); /* * The original Java version * *public int indexOf(int ch) { * return indexOf(ch, 0); *} */ /** * Code shared by String and StringBuffer to do searches. The * source is the character array being searched, and the target * is the string being searched for. * * @param source the characters being searched. * @param sourceOffset offset of the source string. * @param sourceCount count of the source string. * @param target the characters being searched for. * @param targetOffset offset of the target string. * @param targetCount count of the target string. * @param fromIndex the index to begin searching from. */ static int indexOf(char[] source, int sourceOffset, int sourceCount, char[] target, int targetOffset, int targetCount, int fromIndex) { if (fromIndex >= sourceCount) { return (targetCount == 0 ? sourceCount : -1); } if (fromIndex < 0) { fromIndex = 0; } if (targetCount == 0) { return fromIndex; } char first = target[targetOffset]; int i = sourceOffset + fromIndex; int max = sourceOffset + (sourceCount - targetCount); startSearchForFirstChar: while (true) { /* Look for first character. */ while (i <= max && source[i] != first) { i++; } if (i > max) { return -1; } /* Found first character, now look at the rest of v2 */ int j = i + 1; int end = j + targetCount - 1; int k = targetOffset + 1; while (j < end) { if (source[j++] != target[k++]) { i++; /* Look for str's first char again. */ continue startSearchForFirstChar; } } return i - sourceOffset; /* Found whole string. */ } } /* * The original Java version * *public int indexOf(int ch) { * return indexOf(ch, 0); *} */ /** * Returns the index within this string of the first occurrence of the * specified character, starting the search at the specified index. * <p> * If a character with value <code>ch</code> occurs in the character * sequence represented by this <code>String</code> object at an index * no smaller than <code>fromIndex</code>, then the index of the first * such occurrence is returned--that is, the smallest value <i>k</i> * such that: * <blockquote><pre> * (this.charAt(<i>k</i>) == ch) && (<i>k</i> >= fromIndex) * </pre></blockquote> * is true. If no such character occurs in this string at or after * position <code>fromIndex</code>, then <code>-1</code> is returned. * <p> * There is no restriction on the value of <code>fromIndex</code>. If it * is negative, it has the same effect as if it were zero: this entire * string may be searched. If it is greater than the length of this * string, it has the same effect as if it were equal to the length of * this string: <code>-1</code> is returned. * * @param ch a character. * @param fromIndex the index to start the search from. * @return the index of the first occurrence of the character in the * character sequence represented by this object that is greater * than or equal to <code>fromIndex</code>, or <code>-1</code> * if the character does not occur. */ public native int indexOf(int ch, int fromIndex); /* * The original Java version * *public int indexOf(int ch, int fromIndex) { * int max = offset + count; * char v[] = value; * * if (fromIndex < 0) { * fromIndex = 0; * } else if (fromIndex >= count) { * // Note: fromIndex might be near -1>>>1. * return -1; * } * for (int i = offset + fromIndex ; i < max ; i++) { * if (v[i] == ch) { * return i - offset; * } * } * return -1; *} */ /** * Returns the index within this string of the last occurrence of the * specified character. That is, the index returned is the largest * value <i>k</i> such that: * <blockquote><pre> * this.charAt(<i>k</i>) == ch * </pre></blockquote> * is true. * The String is searched backwards starting at the last character. * * @param ch a character. * @return the index of the last occurrence of the character in the * character sequence represented by this object, or * <code>-1</code> if the character does not occur. */ public int lastIndexOf(int ch) { return lastIndexOf(ch, count - 1); } /** * Returns the index within this string of the last occurrence of the * specified character, searching backward starting at the specified * index. That is, the index returned is the largest value <i>k</i> * such that: * <blockquote><pre> * this.charAt(k) == ch) && (k <= fromIndex) * </pre></blockquote> * is true. * * @param ch a character. * @param fromIndex the index to start the search from. There is no * restriction on the value of <code>fromIndex</code>. If it is * greater than or equal to the length of this string, it has * the same effect as if it were equal to one less than the * length of this string: this entire string may be searched. * If it is negative, it has the same effect as if it were -1: * -1 is returned. * @return the index of the last occurrence of the character in the * character sequence represented by this object that is less * than or equal to <code>fromIndex</code>, or <code>-1</code> * if the character does not occur before that point. */ public int lastIndexOf(int ch, int fromIndex) { int min = offset; char v[] = value; for (int i = offset + ((fromIndex >= count) ? count - 1 : fromIndex) ; i >= min ; i--) { if (v[i] == ch) { return i - offset; } } return -1; } /** * Returns the index within this string of the first occurrence of the * specified substring. The integer returned is the smallest value * <i>k</i> such that: * <blockquote><pre> * this.startsWith(str, <i>k</i>) * </pre></blockquote> * is <code>true</code>. * * @param str any string. * @return if the string argument occurs as a substring within this * object, then the index of the first character of the first * such substring is returned; if it does not occur as a * substring, <code>-1</code> is returned. */ public native int indexOf(String str); /* * The original Java version * *public int indexOf(String str) { * return indexOf(str, 0); *} */ /** * Returns the index within this string of the first occurrence of the * specified substring, starting at the specified index. The integer * returned is the smallest value <tt>k</tt> for which: * <blockquote><pre> * k >= Math.min(fromIndex, str.length()) && this.startsWith(str, k) * </pre></blockquote> * If no such value of <i>k</i> exists, then -1 is returned. * * @param str the substring for which to search. * @param fromIndex the index from which to start the search. * @return the index within this string of the first occurrence of the * specified substring, starting at the specified index. */ public native int indexOf(String str, int fromIndex); /* * The original Java version * *public int indexOf(String str, int fromIndex) { * char v1[] = value; * char v2[] = str.value; * int max = offset + (count - str.count); * if (fromIndex >= count) { * if (count == 0 && fromIndex == 0 && str.count == 0) { * /* There is an empty string at index 0 in an empty string. * return 0; * } * /* Note: fromIndex might be near -1>>>1 * return -1; * } * if (fromIndex < 0) { * fromIndex = 0; * } * if (str.count == 0) { * return fromIndex; * } * * int strOffset = str.offset; * char first = v2[strOffset]; * int i = offset + fromIndex; * *startSearchForFirstChar: * while (true) { * * /* Look for first character. * while (i <= max && v1[i] != first) { * i++; * } * if (i > max) { * return -1; * } * * /* Found first character, now look at the rest of v2 * int j = i + 1; * int end = j + str.count - 1; * int k = strOffset + 1; * while (j < end) { * if (v1[j++] != v2[k++]) { * i++; * /* Look for str's first char again. * continue startSearchForFirstChar; * } * } * return i - offset; /* Found whole string. * } *} */ /** * Returns the index within this string of the rightmost occurrence * of the specified substring. The rightmost empty string "" is * considered to occur at the index value <code>this.length()</code>. * The returned index is the largest value <i>k</i> such that * <blockquote><pre> * this.startsWith(str, k) * </pre></blockquote> * is true. * * @param str the substring to search for. * @return if the string argument occurs one or more times as a substring * within this object, then the index of the first character of * the last such substring is returned. If it does not occur as * a substring, <code>-1</code> is returned. */ public int lastIndexOf(String str) { return lastIndexOf(str, count); } /** * Returns the index within this string of the last occurrence of the * specified substring, searching backward starting at the specified index. * The integer returned is the largest value <i>k</i> such that: * <blockquote><pre> * k <= Math.min(fromIndex, str.length()) && this.startsWith(str, k) * </pre></blockquote> * If no such value of <i>k</i> exists, then -1 is returned. * * @param str the substring to search for. * @param fromIndex the index to start the search from. * @return the index within this string of the last occurrence of the * specified substring. */ public int lastIndexOf(String str, int fromIndex) { return lastIndexOf(value, offset, count, str.value, str.offset, str.count, fromIndex); } /** * Code shared by String and StringBuffer to do searches. The * source is the character array being searched, and the target * is the string being searched for. * * @param source the characters being searched. * @param sourceOffset offset of the source string. * @param sourceCount count of the source string. * @param target the characters being searched for. * @param targetOffset offset of the target string. * @param targetCount count of the target string. * @param fromIndex the index to begin searching from. */ static int lastIndexOf(char[] source, int sourceOffset, int sourceCount, char[] target, int targetOffset, int targetCount, int fromIndex) { /* * Check arguments; return immediately where possible. For * consistency, don't check for null str. */ int rightIndex = sourceCount - targetCount; if (fromIndex < 0) { return -1; } if (fromIndex > rightIndex) { fromIndex = rightIndex; } /* Empty string always matches. */ if (targetCount == 0) { return fromIndex; } int strLastIndex = targetOffset + targetCount - 1; char strLastChar = target[strLastIndex]; int min = sourceOffset + targetCount - 1; int i = min + fromIndex; startSearchForLastChar: while (true) { while (i >= min && source[i] != strLastChar) { i--; } if (i < min) { return -1; } int j = i - 1; int start = j - (targetCount - 1); int k = strLastIndex - 1; while (j > start) { if (source[j--] != target[k--]) { i--; continue startSearchForLastChar; } } return start - sourceOffset + 1; } } /** * Returns a new string that is a substring of this string. The * substring begins with the character at the specified index and * extends to the end of this string. <p> * Examples: * <blockquote><pre> * "unhappy".substring(2) returns "happy" * "Harbison".substring(3) returns "bison" * "emptiness".substring(9) returns "" (an empty string) * </pre></blockquote> * * @param beginIndex the beginning index, inclusive. * @return the specified substring. * @exception IndexOutOfBoundsException if * <code>beginIndex</code> is negative or larger than the * length of this <code>String</code> object. */ public String substring(int beginIndex) { return substring(beginIndex, count); } /** * Returns a new string that is a substring of this string. The * substring begins at the specified <code>beginIndex</code> and * extends to the character at index <code>endIndex - 1</code>. * Thus the length of the substring is <code>endIndex-beginIndex</code>. * <p> * Examples: * <blockquote><pre> * "hamburger".substring(4, 8) returns "urge" * "smiles".substring(1, 5) returns "mile" * </pre></blockquote> * * @param beginIndex the beginning index, inclusive. * @param endIndex the ending index, exclusive. * @return the specified substring. * @exception IndexOutOfBoundsException if the * <code>beginIndex</code> is negative, or * <code>endIndex</code> is larger than the length of * this <code>String</code> object, or * <code>beginIndex</code> is larger than * <code>endIndex</code>. */ public String substring(int beginIndex, int endIndex) { if (beginIndex < 0) { throw new StringIndexOutOfBoundsException(beginIndex); } if (endIndex > count) { throw new StringIndexOutOfBoundsException(endIndex); } if (beginIndex > endIndex) { throw new StringIndexOutOfBoundsException(endIndex - beginIndex); } return ((beginIndex == 0) && (endIndex == count)) ? this : new String(offset + beginIndex, endIndex - beginIndex, value); } /** * Returns a new character sequence that is a subsequence of this sequence. * * <p> An invocation of this method of the form * * <blockquote><pre> * str.subSequence(begin, end)</pre></blockquote> * * behaves in exactly the same way as the invocation * * <blockquote><pre> * str.substring(begin, end)</pre></blockquote> * * This method is defined so that the <tt>String</tt> class can implement * the {@link CharSequence} interface. </p> * * @param beginIndex the begin index, inclusive. * @param endIndex the end index, exclusive. * @return the specified subsequence. * * @throws IndexOutOfBoundsException * if <tt>beginIndex</tt> or <tt>endIndex</tt> are negative, * if <tt>endIndex</tt> is greater than <tt>length()</tt>, * or if <tt>beginIndex</tt> is greater than <tt>startIndex</tt> * * @since 1.4 * @spec JSR-51 */ public CharSequence subSequence(int beginIndex, int endIndex) { return this.substring(beginIndex, endIndex); } /** * Concatenates the specified string to the end of this string. * <p> * If the length of the argument string is <code>0</code>, then this * <code>String</code> object is returned. Otherwise, a new * <code>String</code> object is created, representing a character * sequence that is the concatenation of the character sequence * represented by this <code>String</code> object and the character * sequence represented by the argument string.<p> * Examples: * <blockquote><pre> * "cares".concat("s") returns "caress" * "to".concat("get").concat("her") returns "together" * </pre></blockquote> * * @param str the <code>String</code> that is concatenated to the end * of this <code>String</code>. * @return a string that represents the concatenation of this object's * characters followed by the string argument's characters. */ public String concat(String str) { int otherLen = str.length(); if (otherLen == 0) { return this; } char buf[] = new char[count + otherLen]; getChars(0, count, buf, 0); str.getChars(0, otherLen, buf, count); return new String(0, count + otherLen, buf); } /** * Returns a new string resulting from replacing all occurrences of * <code>oldChar</code> in this string with <code>newChar</code>. * <p> * If the character <code>oldChar</code> does not occur in the * character sequence represented by this <code>String</code> object, * then a reference to this <code>String</code> object is returned. * Otherwise, a new <code>String</code> object is created that * represents a character sequence identical to the character sequence * represented by this <code>String</code> object, except that every * occurrence of <code>oldChar</code> is replaced by an occurrence * of <code>newChar</code>. * <p> * Examples: * <blockquote><pre> * "mesquite in your cellar".replace('e', 'o') * returns "mosquito in your collar" * "the war of baronets".replace('r', 'y') * returns "the way of bayonets" * "sparring with a purple porpoise".replace('p', 't') * returns "starring with a turtle tortoise" * "JonL".replace('q', 'x') returns "JonL" (no change) * </pre></blockquote> * * @param oldChar the old character. * @param newChar the new character. * @return a string derived from this string by replacing every * occurrence of <code>oldChar</code> with <code>newChar</code>. */ public String replace(char oldChar, char newChar) { if (oldChar != newChar) { int len = count; int i = -1; char[] val = value; /* avoid getfield opcode */ int off = offset; /* avoid getfield opcode */ while (++i < len) { if (val[off + i] == oldChar) { break; } } if (i < len) { char buf[] = new char[len]; for (int j = 0 ; j < i ; j++) { buf[j] = val[off+j]; } while (i < len) { char c = val[off + i]; buf[i] = (c == oldChar) ? newChar : c; i++; } return new String(0, len, buf); } } return this; } /** * Tells whether or not this string matches the given <a * href="../util/regex/Pattern.html#sum">regular expression</a>. * * <p> An invocation of this method of the form * <i>str</i><tt>.matches(</tt><i>regex</i><tt>)</tt> yields exactly the * same result as the expression * * <blockquote><tt> {@link java.util.regex.Pattern}.{@link * java.util.regex.Pattern#matches(String,CharSequence) * matches}(</tt><i>regex</i><tt>,</tt> <i>str</i><tt>)</tt></blockquote> * * @param regex * the regular expression to which this string is to be matched * * @return <tt>true</tt> if, and only if, this string matches the * given regular expression * * @throws PatternSyntaxException * if the regular expression's syntax is invalid * * @see java.util.regex.Pattern * * @since 1.4 * @spec JSR-51 */ /* public boolean matches(String regex) { return Pattern.matches(regex, this); } */ /** * Replaces the first substring of this string that matches the given <a * href="../util/regex/Pattern.html#sum">regular expression</a> with the * given replacement. * * <p> An invocation of this method of the form * <i>str</i><tt>.replaceFirst(</tt><i>regex</i><tt>,</tt> <i>repl</i><tt>)</tt> * yields exactly the same result as the expression * * <blockquote><tt> * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile * compile}(</tt><i>regex</i><tt>).{@link * java.util.regex.Pattern#matcher(java.lang.CharSequence) * matcher}(</tt><i>str</i><tt>).{@link java.util.regex.Matcher#replaceFirst * replaceFirst}(</tt><i>repl</i><tt>)</tt></blockquote> * * @param regex * the regular expression to which this string is to be matched * * @return The resulting <tt>String</tt> * * @throws PatternSyntaxException * if the regular expression's syntax is invalid * * @see java.util.regex.Pattern * * @since 1.4 * @spec JSR-51 */ /* public String replaceFirst(String regex, String replacement) { return Pattern.compile(regex).matcher(this).replaceFirst(replacement); } */ /** * Replaces each substring of this string that matches the given <a * href="../util/regex/Pattern.html#sum">regular expression</a> with the * given replacement. * * <p> An invocation of this method of the form * <i>str</i><tt>.replaceAll(</tt><i>regex</i><tt>,</tt> <i>repl</i><tt>)</tt> * yields exactly the same result as the expression * * <blockquote><tt> * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile * compile}(</tt><i>regex</i><tt>).{@link * java.util.regex.Pattern#matcher(java.lang.CharSequence) * matcher}(</tt><i>str</i><tt>).{@link java.util.regex.Matcher#replaceAll * replaceAll}(</tt><i>repl</i><tt>)</tt></blockquote> * * @param regex * the regular expression to which this string is to be matched * * @return The resulting <tt>String</tt> * * @throws PatternSyntaxException * if the regular expression's syntax is invalid * * @see java.util.regex.Pattern * * @since 1.4 * @spec JSR-51 */ /* public String replaceAll(String regex, String replacement) { return Pattern.compile(regex).matcher(this).replaceAll(replacement); } */ /** * Splits this string around matches of the given <a * href="{@docRoot}/java/util/regex/Pattern.html#sum">regular expression</a>. * * <p> The array returned by this method contains each substring of this * string that is terminated by another substring that matches the given * expression or is terminated by the end of the string. The substrings in * the array are in the order in which they occur in this string. If the * expression does not match any part of the input then the resulting array * has just one element, namely this string. * * <p> The <tt>limit</tt> parameter controls the number of times the * pattern is applied and therefore affects the length of the resulting * array. If the limit <i>n</i> is greater than zero then the pattern * will be applied at most <i>n</i> - 1 times, the array's * length will be no greater than <i>n</i>, and the array's last entry * will contain all input beyond the last matched delimiter. If <i>n</i> * is non-positive then the pattern will be applied as many times as * possible and the array can have any length. If <i>n</i> is zero then * the pattern will be applied as many times as possible, the array can * have any length, and trailing empty strings will be discarded. * * <p> The string <tt>"boo:and:foo"</tt>, for example, yields the * following results with these parameters: * * <blockquote><table cellpadding=1 cellspacing=0 summary="Split example showing regex, limit, and result"> * <tr> * <th>Regex</th> * <th>Limit</th> * <th>Result</th> * </tr> * <tr><td align=center>:</td> * <td align=center>2</td> * <td><tt>{ "boo", "and:foo" }</tt></td></tr> * <tr><td align=center>:</td> * <td align=center>5</td> * <td><tt>{ "boo", "and", "foo" }</tt></td></tr> * <tr><td align=center>:</td> * <td align=center>-2</td> * <td><tt>{ "boo", "and", "foo" }</tt></td></tr> * <tr><td align=center>o</td> * <td align=center>5</td> * <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr> * <tr><td align=center>o</td> * <td align=center>-2</td> * <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr> * <tr><td align=center>o</td> * <td align=center>0</td> * <td><tt>{ "b", "", ":and:f" }</tt></td></tr> * </table></blockquote> * * <p> An invocation of this method of the form * <i>str.</i><tt>split(</tt><i>regex</i><tt>,</tt> <i>n</i><tt>)</tt> * yields the same result as the expression * * <blockquote> * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile * compile}<tt>(</tt><i>regex</i><tt>)</tt>.{@link * java.util.regex.Pattern#split(java.lang.CharSequence,int) * split}<tt>(</tt><i>str</i><tt>,</tt> <i>n</i><tt>)</tt> * </blockquote> * * * @param regex * the delimiting regular expression * * @param limit * the result threshold, as described above * * @return the array of strings computed by splitting this string * around matches of the given regular expression * * @throws PatternSyntaxException * if the regular expression's syntax is invalid * * @see java.util.regex.Pattern * * @since 1.4 * @spec JSR-51 */ /* public String[] split(String regex, int limit) { return Pattern.compile(regex).split(this, limit); } */ /** * Splits this string around matches of the given <a * href="{@docRoot}/java/util/regex/Pattern.html#sum">regular expression</a>. * * <p> This method works as if by invoking the two-argument {@link * #split(String, int) split} method with the given expression and a limit * argument of zero. Trailing empty strings are therefore not included in * the resulting array. * * <p> The string <tt>"boo:and:foo"</tt>, for example, yields the following * results with these expressions: * * <blockquote><table cellpadding=1 cellspacing=0 summary="Split examples showing regex and result"> * <tr> * <th>Regex</th> * <th>Result</th> * </tr> * <tr><td align=center>:</td> * <td><tt>{ "boo", "and", "foo" }</tt></td></tr> * <tr><td align=center>o</td> * <td><tt>{ "b", "", ":and:f" }</tt></td></tr> * </table></blockquote> * * * @param regex * the delimiting regular expression * * @return the array of strings computed by splitting this string * around matches of the given regular expression * * @throws PatternSyntaxException * if the regular expression's syntax is invalid * * @see java.util.regex.Pattern * * @since 1.4 * @spec JSR-51 */ /* public String[] split(String regex) { return split(regex, 0); } */ /** * Converts all of the characters in this <code>String</code> to lower * case using the rules of the given <code>Locale</code>. Case mappings rely * heavily on the Unicode specification's character data. Since case * mappings are not always 1:1 char mappings, the resulting <code>String</code> * may be a different length than the original <code>String</code>. * <p> * Examples of lowercase mappings are in the following table: * <table border="1" summary="Lowercase mapping examples showing language code of locale, upper case, lower case, and description"> * <tr> * <th>Language Code of Locale</th> * <th>Upper Case</th> * <th>Lower Case</th> * <th>Description</th> * </tr> * <tr> * <td>tr (Turkish)</td> * <td>\u0130</td> * <td>\u0069</td> * <td>capital letter I with dot above -> small letter i</td> * </tr> * <tr> * <td>tr (Turkish)</td> * <td>\u0049</td> * <td>\u0131</td> * <td>capital letter I -> small letter dotless i </td> * </tr> * <tr> * <td>(all)</td> * <td>French Fries</td> * <td>french fries</td> * <td>lowercased all chars in String</td> * </tr> * <tr> * <td>(all)</td> * <td><img src="doc-files/capiota.gif" alt="capiota"><img src="doc-files/capchi.gif" alt="capchi"> * <img src="doc-files/captheta.gif" alt="captheta"><img src="doc-files/capupsil.gif" alt="capupsil"> * <img src="doc-files/capsigma.gif" alt="capsigma"></td> * <td><img src="doc-files/iota.gif" alt="iota"><img src="doc-files/chi.gif" alt="chi"> * <img src="doc-files/theta.gif" alt="theta"><img src="doc-files/upsilon.gif" alt="upsilon"> * <img src="doc-files/sigma1.gif" alt="sigma"></td> * <td>lowercased all chars in String</td> * </tr> * </table> * * @param locale use the case transformation rules for this locale * @return the <code>String</code>, converted to lowercase. * @see java.lang.String#toLowerCase() * @see java.lang.String#toUpperCase() * @see java.lang.String#toUpperCase(Locale) * @since 1.1 */ public String toLowerCase(Locale locale) { if (locale == null) throw new NullPointerException(); int len = count; int off = offset; char[] val = value; int firstUpper; /* Now check if there are any characters that need to be changed. */ scan: { for (firstUpper = 0 ; firstUpper < len ; firstUpper++) { char c = value[off+firstUpper]; if (c != Character.toLowerCase(c)) {break scan;} } return this; } char[] result = new char[count]; /* Just copy the first few lowerCase characters. */ CVM.copyCharArray(val, off, result, 0, firstUpper); if (locale.getLanguage().equals("tr")) { // special loop for Turkey for (int i = firstUpper; i < len; ++i) { char ch = val[off+i]; if (ch == 'I') { result[i] = '\u0131'; // dotless small i continue; } if (ch == '\u0130') { // dotted I result[i] = 'i'; // dotted i continue; } result[i] = Character.toLowerCase(ch); } } else { // normal, fast loop for (int i = firstUpper; i < len; ++i) { result[i] = Character.toLowerCase(val[off+i]); } } // Since we created the result array, just used the special // internal constructor to avoid cloning the char array: return new String(0, result.length, result); } /** * Converts all of the characters in this <code>String</code> to lower * case using the rules of the default locale. This is equivalent to calling * <code>toLowerCase(Locale.getDefault())</code>. * <p> * @return the <code>String</code>, converted to lowercase. * @see java.lang.String#toLowerCase(Locale) */ public String toLowerCase() { return toLowerCase(Locale.getDefault()); } /** * Converts all of the characters in this <code>String</code> to upper * case using the rules of the given <code>Locale</code>. Case mappings rely * heavily on the Unicode specification's character data. Since case mappings * are not always 1:1 char mappings, the resulting <code>String</code> may * be a different length than the original <code>String</code>. * <p> * Examples of locale-sensitive and 1:M case mappings are in the following table. * <p> * <table border="1" summary="Examples of locale-sensitive and 1:M case mappings. Shows Language code of locale, lower case, upper case, and description."> * <tr> * <th>Language Code of Locale</th> * <th>Lower Case</th> * <th>Upper Case</th> * <th>Description</th> * </tr> * <tr> * <td>tr (Turkish)</td> * <td>\u0069</td> * <td>\u0130</td> * <td>small letter i -> capital letter I with dot above</td> * </tr> * <tr> * <td>tr (Turkish)</td> * <td>\u0131</td> * <td>\u0049</td> * <td>small letter dotless i -> capital letter I</td> * </tr> * <tr> * <td>(all)</td> * <td>\u00df</td> * <td>\u0053 \u0053</td> * <td>small letter sharp s -> two letters: SS</td> * </tr> * <tr> * <td>(all)</td> * <td>Fahrvergnügen</td> * <td>FAHRVERGNÜGEN</td> * <td></td> * </tr> * </table> * @param locale use the case transformation rules for this locale * @return the <code>String</code>, converted to uppercase. * @see java.lang.String#toUpperCase() * @see java.lang.String#toLowerCase() * @see java.lang.String#toLowerCase(Locale) * @since 1.1 */ public String toUpperCase(Locale locale) { int len = count; int off = offset; char[] val = value; int firstLower; /* Now check if there are any characters that need changing. */ scan: { char upperCaseChar; char c; for (firstLower = 0 ; firstLower < len ; firstLower++) { c = value[off+firstLower]; upperCaseChar = Character.toUpperCaseEx(c); if (upperCaseChar == Character.CHAR_ERROR || c != upperCaseChar) { break scan; } } return this; } char[] result = new char[len]; /* might grow! */ int resultOffset = 0; /* result grows, so i+resultOffset * is the write location in result */ /* Just copy the first few upperCase characters. */ CVM.copyCharArray(val, off, result, 0, firstLower); if (locale.getLanguage().equals("tr")) { // special loop for Turkey char[] upperCharArray; char upperChar; char ch; for (int i = firstLower; i < len; ++i) { ch = val[off+i]; if (ch == 'i') { result[i+resultOffset] = '\u0130'; // dotted cap i continue; } if (ch == '\u0131') { // dotless i result[i+resultOffset] = 'I'; // cap I continue; } upperChar = Character.toUpperCaseEx(ch); if (upperChar == Character.CHAR_ERROR) { upperCharArray = Character.toUpperCaseCharArray(ch); /* Grow result. */ int mapLen = upperCharArray.length; char[] result2 = new char[result.length + mapLen - 1]; CVM.copyCharArray(result, 0, result2, 0, i + 1 + resultOffset); for (int x=0; x<mapLen; ++x) { result2[i+resultOffset++] = upperCharArray[x]; } --resultOffset; result = result2; } else { result[i+resultOffset] = upperChar; } } } else { // normal, fast loop char[] upperCharArray; char upperChar; char ch; for (int i = firstLower; i < len; ++i) { ch = val[off+i]; upperChar = Character.toUpperCaseEx(ch); if (upperChar == Character.CHAR_ERROR) { upperCharArray = Character.toUpperCaseCharArray(ch); /* Grow result. */ int mapLen = upperCharArray.length; char[] result2 = new char[result.length + mapLen - 1]; CVM.copyCharArray(result, 0, result2, 0, i + 1 + resultOffset); for (int x=0; x<mapLen; ++x) { result2[i+resultOffset++] = upperCharArray[x]; } --resultOffset; result = result2; } else { result[i+resultOffset] = upperChar; } } } // Since we created the result array, just used the special // internal constructor to avoid cloning the char array: return new String(0, result.length, result); } /** * Converts all of the characters in this <code>String</code> to upper * case using the rules of the default locale. This method is equivalent to * <code>toUpperCase(Locale.getDefault())</code>. * <p> * @return the <code>String</code>, converted to uppercase. * @see java.lang.String#toUpperCase(Locale) */ public String toUpperCase() { return toUpperCase(Locale.getDefault()); } /** * Returns a copy of the string, with leading and trailing whitespace * omitted. * <p> * If this <code>String</code> object represents an empty character * sequence, or the first and last characters of character sequence * represented by this <code>String</code> object both have codes * greater than <code>'\u0020'</code> (the space character), then a * reference to this <code>String</code> object is returned. * <p> * Otherwise, if there is no character with a code greater than * <code>'\u0020'</code> in the string, then a new * <code>String</code> object representing an empty string is created * and returned. * <p> * Otherwise, let <i>k</i> be the index of the first character in the * string whose code is greater than <code>'\u0020'</code>, and let * <i>m</i> be the index of the last character in the string whose code * is greater than <code>'\u0020'</code>. A new <code>String</code> * object is created, representing the substring of this string that * begins with the character at index <i>k</i> and ends with the * character at index <i>m</i>-that is, the result of * <code>this.substring(<i>k</i>, <i>m</i>+1)</code>. * <p> * This method may be used to trim * {@link Character#isSpace(char) whitespace} from the beginning and end * of a string; in fact, it trims all ASCII control characters as well. * * @return A copy of this string with leading and trailing white * space removed, or this string if it has no leading or * trailing white space. */ public String trim() { int len = count; int st = 0; int off = offset; /* avoid getfield opcode */ char[] val = value; /* avoid getfield opcode */ while ((st < len) && (val[off + st] <= ' ')) { st++; } while ((st < len) && (val[off + len - 1] <= ' ')) { len--; } return ((st > 0) || (len < count)) ? substring(st, len) : this; } /** * This object (which is already a string!) is itself returned. * * @return the string itself. */ public String toString() { return this; } /** * Converts this string to a new character array. * * @return a newly allocated character array whose length is the length * of this string and whose contents are initialized to contain * the character sequence represented by this string. */ public char[] toCharArray() { char result[] = new char[count]; getChars(0, count, result, 0); return result; } /** * Returns the string representation of the <code>Object</code> argument. * * @param obj an <code>Object</code>. * @return if the argument is <code>null</code>, then a string equal to * <code>"null"</code>; otherwise, the value of * <code>obj.toString()</code> is returned. * @see java.lang.Object#toString() */ public static String valueOf(Object obj) { return (obj == null) ? "null" : obj.toString(); } /** * Returns the string representation of the <code>char</code> array * argument. The contents of the character array are copied; subsequent * modification of the character array does not affect the newly * created string. * * @param data a <code>char</code> array. * @return a newly allocated string representing the same sequence of * characters contained in the character array argument. */ public static String valueOf(char data[]) { return new String(data); } /** * Returns the string representation of a specific subarray of the * <code>char</code> array argument. * <p> * The <code>offset</code> argument is the index of the first * character of the subarray. The <code>count</code> argument * specifies the length of the subarray. The contents of the subarray * are copied; subsequent modification of the character array does not * affect the newly created string. * * @param data the character array. * @param offset the initial offset into the value of the * <code>String</code>. * @param count the length of the value of the <code>String</code>. * @return a string representing the sequence of characters contained * in the subarray of the character array argument. * @exception IndexOutOfBoundsException if <code>offset</code> is * negative, or <code>count</code> is negative, or * <code>offset+count</code> is larger than * <code>data.length</code>. */ public static String valueOf(char data[], int offset, int count) { return new String(data, offset, count); } /** * Returns a String that represents the character sequence in the * array specified. * * @param data the character array. * @param offset initial offset of the subarray. * @param count length of the subarray. * @return a <code>String</code> that contains the characters of the * specified subarray of the character array. */ public static String copyValueOf(char data[], int offset, int count) { // All public String constructors now copy the data. return new String(data, offset, count); } /** * Returns a String that represents the character sequence in the * array specified. * * @param data the character array. * @return a <code>String</code> that contains the characters of the * character array. */ public static String copyValueOf(char data[]) { return copyValueOf(data, 0, data.length); } /** * Returns the string representation of the <code>boolean</code> argument. * * @param b a <code>boolean</code>. * @return if the argument is <code>true</code>, a string equal to * <code>"true"</code> is returned; otherwise, a string equal to * <code>"false"</code> is returned. */ public static String valueOf(boolean b) { return b ? "true" : "false"; } /** * Returns the string representation of the <code>char</code> * argument. * * @param c a <code>char</code>. * @return a string of length <code>1</code> containing * as its single character the argument <code>c</code>. */ public static String valueOf(char c) { char data[] = {c}; return new String(0, 1, data); } /** * Returns the string representation of the <code>int</code> argument. * <p> * The representation is exactly the one returned by the * <code>Integer.toString</code> method of one argument. * * @param i an <code>int</code>. * @return a string representation of the <code>int</code> argument. * @see java.lang.Integer#toString(int, int) */ public static String valueOf(int i) { return Integer.toString(i, 10); } /** * Returns the string representation of the <code>long</code> argument. * <p> * The representation is exactly the one returned by the * <code>Long.toString</code> method of one argument. * * @param l a <code>long</code>. * @return a string representation of the <code>long</code> argument. * @see java.lang.Long#toString(long) */ public static String valueOf(long l) { return Long.toString(l, 10); } /** * Returns the string representation of the <code>float</code> argument. * <p> * The representation is exactly the one returned by the * <code>Float.toString</code> method of one argument. * * @param f a <code>float</code>. * @return a string representation of the <code>float</code> argument. * @see java.lang.Float#toString(float) */ public static String valueOf(float f) { return Float.toString(f); } /** * Returns the string representation of the <code>double</code> argument. * <p> * The representation is exactly the one returned by the * <code>Double.toString</code> method of one argument. * * @param d a <code>double</code>. * @return a string representation of the <code>double</code> argument. * @see java.lang.Double#toString(double) */ public static String valueOf(double d) { return Double.toString(d); } /** * Returns a canonical representation for the string object. * <p> * A pool of strings, initially empty, is maintained privately by the * class <code>String</code>. * <p> * When the intern method is invoked, if the pool already contains a * string equal to this <code>String</code> object as determined by * the {@link #equals(Object)} method, then the string from the pool is * returned. Otherwise, this <code>String</code> object is added to the * pool and a reference to this <code>String</code> object is returned. * <p> * It follows that for any two strings <code>s</code> and <code>t</code>, * <code>s.intern() == t.intern()</code> is <code>true</code> * if and only if <code>s.equals(t)</code> is <code>true</code>. * <p> * All literal strings and string-valued constant expressions are * interned. String literals are defined in §3.10.5 of the * <a href="http://java.sun.com/docs/books/jls/html/">Java Language * Specification</a> * * @return a string that has the same contents as this string, but is * guaranteed to be from a pool of unique strings. */ public native String intern(); }