/* * @(#)Integer.java 1.75 06/10/10 * * Copyright 1990-2008 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License version * 2 only, as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 for more details (a copy is * included at /legal/license.txt). * * You should have received a copy of the GNU General Public License * version 2 along with this work; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa * Clara, CA 95054 or visit www.sun.com if you need additional * information or have any questions. * */ package java.lang; /** * The <code>Integer</code> class wraps a value of the primitive type * <code>int</code> in an object. An object of type * <code>Integer</code> contains a single field whose type is * <code>int</code>. * * <p> * * In addition, this class provides several methods for converting an * <code>int</code> to a <code>String</code> and a <code>String</code> * to an <code>int</code>, as well as other constants and methods * useful when dealing with an <code>int</code>. * * @author Lee Boynton * @author Arthur van Hoff * @version 1.67 11/10/00 * @since JDK1.0 */ public final class Integer extends Number implements Comparable { /** * A constant holding the minimum value an <code>int</code> can * have, -2<sup>31</sup>. */ public static final int MIN_VALUE = 0x80000000; /** * A constant holding the maximum value an <code>int</code> can * have, 2<sup>31</sup>-1. */ public static final int MAX_VALUE = 0x7fffffff; /** * The <code>Class</code> instance representing the primitive type * <code>int</code>. * * @since JDK1.1 */ public static final Class TYPE = Class.getPrimitiveClass("int"); /** * All possible chars for representing a number as a String */ final static char[] digits = { '0' , '1' , '2' , '3' , '4' , '5' , '6' , '7' , '8' , '9' , 'a' , 'b' , 'c' , 'd' , 'e' , 'f' , 'g' , 'h' , 'i' , 'j' , 'k' , 'l' , 'm' , 'n' , 'o' , 'p' , 'q' , 'r' , 's' , 't' , 'u' , 'v' , 'w' , 'x' , 'y' , 'z' }; /** * Returns a string representation of the first argument in the * radix specified by the second argument. * <p> * If the radix is smaller than <code>Character.MIN_RADIX</code> * or larger than <code>Character.MAX_RADIX</code>, then the radix * <code>10</code> is used instead. * <p> * If the first argument is negative, the first element of the * result is the ASCII minus character <code>'-'</code> * (<code>'\u002D'</code>). If the first argument is not * negative, no sign character appears in the result. * <p> * The remaining characters of the result represent the magnitude * of the first argument. If the magnitude is zero, it is * represented by a single zero character <code>'0'</code> * (<code>'\u0030'</code>); otherwise, the first character of * the representation of the magnitude will not be the zero * character. The following ASCII characters are used as digits: * <blockquote><pre> * 0123456789abcdefghijklmnopqrstuvwxyz * </pre></blockquote> * These are <code>'\u0030'</code> through * <code>'\u0039'</code> and <code>'\u0061'</code> through * <code>'\u007A'</code>. If <code>radix</code> is * <var>N</var>, then the first <var>N</var> of these characters * are used as radix-<var>N</var> digits in the order shown. Thus, * the digits for hexadecimal (radix 16) are * <code>0123456789abcdef</code>. If uppercase letters are * desired, the {@link java.lang.String#toUpperCase()} method may * be called on the result: * <blockquote><pre> * Integer.toString(n, 16).toUpperCase() * </pre></blockquote> * * @param i an integer to be converted to a string. * @param radix the radix to use in the string representation. * @return a string representation of the argument in the specified radix. * @see java.lang.Character#MAX_RADIX * @see java.lang.Character#MIN_RADIX */ public static String toString(int i, int radix) { if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) radix = 10; /* Use the faster version */ if (radix == 10) { return toString(i); } char buf[] = new char[33]; boolean negative = (i < 0); int charPos = 32; if (!negative) { i = -i; } while (i <= -radix) { buf[charPos--] = digits[-(i % radix)]; i = i / radix; } buf[charPos] = digits[-i]; if (negative) { buf[--charPos] = '-'; } return new String(buf, charPos, (33 - charPos)); } /** * Returns a string representation of the integer argument as an * unsigned integer in base 16. * <p> * The unsigned integer value is the argument plus 2<sup>32</sup> * if the argument is negative; otherwise, it is equal to the * argument. This value is converted to a string of ASCII digits * in hexadecimal (base 16) with no extra leading * <code>0</code>s. If the unsigned magnitude is zero, it is * represented by a single zero character <code>'0'</code> * (<code>'\u0030'</code>); otherwise, the first character of * the representation of the unsigned magnitude will not be the * zero character. The following characters are used as * hexadecimal digits: * <blockquote><pre> * 0123456789abcdef * </pre></blockquote> * These are the characters <code>'\u0030'</code> through * <code>'\u0039'</code> and <code>'\u0061'</code> through * <code>'\u0066'</code>. If uppercase letters are * desired, the {@link java.lang.String#toUpperCase()} method may * be called on the result: * <blockquote><pre> * Integer.toHexString(n).toUpperCase() * </pre></blockquote> * * @param i an integer to be converted to a string. * @return the string representation of the unsigned integer value * represented by the argument in hexadecimal (base 16). * @since JDK1.0.2 */ public static String toHexString(int i) { return toUnsignedString(i, 4); } /** * Returns a string representation of the integer argument as an * unsigned integer in base 8. * <p> * The unsigned integer value is the argument plus 2<sup>32</sup> * if the argument is negative; otherwise, it is equal to the * argument. This value is converted to a string of ASCII digits * in octal (base 8) with no extra leading <code>0</code>s. * <p> * If the unsigned magnitude is zero, it is represented by a * single zero character <code>'0'</code> * (<code>'\u0030'</code>); otherwise, the first character of * the representation of the unsigned magnitude will not be the * zero character. The following characters are used as octal * digits: * <blockquote><pre> * 01234567 * </pre></blockquote> * These are the characters <code>'\u0030'</code> through * <code>'\u0037'</code>. * * @param i an integer to be converted to a string. * @return the string representation of the unsigned integer value * represented by the argument in octal (base 8). * @since JDK1.0.2 */ public static String toOctalString(int i) { return toUnsignedString(i, 3); } /** * Returns a string representation of the integer argument as an * unsigned integer in base 2. * <p> * The unsigned integer value is the argument plus 2<sup>32</sup> * if the argument is negative; otherwise it is equal to the * argument. This value is converted to a string of ASCII digits * in binary (base 2) with no extra leading <code>0</code>s. * If the unsigned magnitude is zero, it is represented by a * single zero character <code>'0'</code> * (<code>'\u0030'</code>); otherwise, the first character of * the representation of the unsigned magnitude will not be the * zero character. The characters <code>'0'</code> * (<code>'\u0030'</code>) and <code>'1'</code> * (<code>'\u0031'</code>) are used as binary digits. * * @param i an integer to be converted to a string. * @return the string representation of the unsigned integer value * represented by the argument in binary (base 2). * @since JDK1.0.2 */ public static String toBinaryString(int i) { return toUnsignedString(i, 1); } /** * Convert the integer to an unsigned number. */ private static String toUnsignedString(int i, int shift) { char[] buf = new char[32]; int charPos = 32; int radix = 1 << shift; int mask = radix - 1; do { buf[--charPos] = digits[i & mask]; i >>>= shift; } while (i != 0); return new String(buf, charPos, (32 - charPos)); } final static char [] DigitTens = { '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '3', '3', '3', '3', '3', '3', '3', '3', '3', '3', '4', '4', '4', '4', '4', '4', '4', '4', '4', '4', '5', '5', '5', '5', '5', '5', '5', '5', '5', '5', '6', '6', '6', '6', '6', '6', '6', '6', '6', '6', '7', '7', '7', '7', '7', '7', '7', '7', '7', '7', '8', '8', '8', '8', '8', '8', '8', '8', '8', '8', '9', '9', '9', '9', '9', '9', '9', '9', '9', '9', } ; final static char [] DigitOnes = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', } ; // I use "invariant division by multiplication" to // accelerate Integer.toString. In particular we want to // avoid division by 10. // // This has roughly the same performance characterists // as the "classic" Integer.toString code on a non-JIT VM. // This avoids .rem and .div calls but has a longer code // path and is thus dominated by dispatch overhead. In the // JIT case the dispatch overhead doesn't exist and this // is considerably faster than the classic code. // // NOTE: can also convert (x * 52429) into the equiv shift-add // sequence. // // RE: Division by Invariant Integers using Multiplication // T Gralund, P Montgomery // ACM PLDI 1994 // /** * Returns a <code>String</code> object representing the * specified integer. The argument is converted to signed decimal * representation and returned as a string, exactly as if the * argument and radix 10 were given as arguments to the {@link * #toString(int, int)} method. * * @param i an integer to be converted. * @return a string representation of the argument in base 10. */ public static String toString(int i) { switch(i) { case Integer.MIN_VALUE: return "-2147483648"; case -3: return "-3"; case -2: return "-2"; case -1: return "-1"; case 0: return "0"; case 1: return "1"; case 2: return "2"; case 3: return "3"; case 4: return "4"; case 5: return "5"; case 6: return "6"; case 7: return "7"; case 8: return "8"; case 9: return "9"; case 10: return "10"; } char[] buf = (char[])(perThreadBuffer.get()); int charPos = getChars(i, buf); return new String(buf, charPos, 12 - charPos); } // Per-thread buffer for string/stringbuffer conversion private static ThreadLocal perThreadBuffer = new ThreadLocal() { protected synchronized Object initialValue() { return new char[12]; } }; private static int getChars(int i, char[] buf) { int q, r; int charPos = 12; char sign = 0; if (i < 0) { sign = '-'; i = -i; } // Generate two digits per iteration while (i >= 65536) { q = i / 100; // really: r = i - (q * 100); r = i - ((q << 6) + (q << 5) + (q << 2)); i = q; buf [--charPos] = DigitOnes[r]; buf [--charPos] = DigitTens[r]; } // Fall thru to fast mode for smaller numbers if (sun.misc.BuildFlags.qAssertsEnabled) assert i <= 65536: i; for (;;) { q = (i * 52429) >>> (16+3); r = i - ((q << 3) + (q << 1)); // r = i-(q*10) ... buf [--charPos] = digits [r]; i = q; if (i == 0) break; } if (sign != 0) { buf [--charPos] = sign; } return charPos; } static void appendTo(int i, StringBuffer sb) { switch(i) { case Integer.MIN_VALUE: sb.append("-2147483648"); return; case -3: sb.append("-3"); return; case -2: sb.append("-2"); return; case -1: sb.append("-1"); return; case 0: sb.append("0"); return; case 1: sb.append("1"); return; case 2: sb.append("2"); return; case 3: sb.append("3"); return; case 4: sb.append("4"); return; case 5: sb.append("5"); return; case 6: sb.append("6"); return; case 7: sb.append("7"); return; case 8: sb.append("8"); return; case 9: sb.append("9"); return; case 10: sb.append("10"); return; } char[] buf = (char[])(perThreadBuffer.get()); int charPos = getChars(i, buf); sb.append(buf, charPos, 12 - charPos); } /** * Parses the string argument as a signed integer in the radix * specified by the second argument. The characters in the string * must all be digits of the specified radix (as determined by * whether {@link java.lang.Character#digit(char, int)} returns a * nonnegative value), except that the first character may be an * ASCII minus sign <code>'-'</code> (<code>'\u002D'</code>) to * indicate a negative value. The resulting integer value is returned. * <p> * An exception of type <code>NumberFormatException</code> is * thrown if any of the following situations occurs: * <ul> * <li>The first argument is <code>null</code> or is a string of * length zero. * <li>The radix is either smaller than * {@link java.lang.Character#MIN_RADIX} or * larger than {@link java.lang.Character#MAX_RADIX}. * <li>Any character of the string is not a digit of the specified * radix, except that the first character may be a minus sign * <code>'-'</code> (<code>'\u002D'</code>) provided that the * string is longer than length 1. * <li>The value represented by the string is not a value of type * <code>int</code>. * </ul><p> * Examples: * <blockquote><pre> * parseInt("0", 10) returns 0 * parseInt("473", 10) returns 473 * parseInt("-0", 10) returns 0 * parseInt("-FF", 16) returns -255 * parseInt("1100110", 2) returns 102 * parseInt("2147483647", 10) returns 2147483647 * parseInt("-2147483648", 10) returns -2147483648 * parseInt("2147483648", 10) throws a NumberFormatException * parseInt("99", 8) throws a NumberFormatException * parseInt("Kona", 10) throws a NumberFormatException * parseInt("Kona", 27) returns 411787 * </pre></blockquote> * * @param s the <code>String</code> containing the integer * representation to be parsed * @param radix the radix to be used while parsing <code>s</code>. * @return the integer represented by the string argument in the * specified radix. * @exception NumberFormatException if the <code>String</code> * does not contain a parsable <code>int</code>. */ public static int parseInt(String s, int radix) throws NumberFormatException { if (s == null) { throw new NumberFormatException("null"); } if (radix < Character.MIN_RADIX) { throw new NumberFormatException("radix " + radix + " less than Character.MIN_RADIX"); } if (radix > Character.MAX_RADIX) { throw new NumberFormatException("radix " + radix + " greater than Character.MAX_RADIX"); } int result = 0; boolean negative = false; int i = 0, max = s.length(); int limit; int multmin; int digit; if (max > 0) { if (s.charAt(0) == '-') { negative = true; limit = Integer.MIN_VALUE; i++; } else { limit = -Integer.MAX_VALUE; } multmin = limit / radix; if (i < max) { digit = Character.digit(s.charAt(i++),radix); if (digit < 0) { throw NumberFormatException.forInputString(s); } else { result = -digit; } } while (i < max) { // Accumulating negatively avoids surprises near MAX_VALUE digit = Character.digit(s.charAt(i++),radix); if (digit < 0) { throw NumberFormatException.forInputString(s); } if (result < multmin) { throw NumberFormatException.forInputString(s); } result *= radix; if (result < limit + digit) { throw NumberFormatException.forInputString(s); } result -= digit; } } else { throw NumberFormatException.forInputString(s); } if (negative) { if (i > 1) { return result; } else { /* Only got "-" */ throw NumberFormatException.forInputString(s); } } else { return -result; } } /** * Parses the string argument as a signed decimal integer. The * characters in the string must all be decimal digits, except that * the first character may be an ASCII minus sign <code>'-'</code> * (<code>'\u002D'</code>) to indicate a negative value. The resulting * integer value is returned, exactly as if the argument and the radix * 10 were given as arguments to the * {@link #parseInt(java.lang.String, int)} method. * * @param s a <code>String</code> containing the <code>int</code> * representation to be parsed * @return the integer value represented by the argument in decimal. * @exception NumberFormatException if the string does not contain a * parsable integer. */ public static int parseInt(String s) throws NumberFormatException { return parseInt(s,10); } /** * Returns an <code>Integer</code> object holding the value * extracted from the specified <code>String</code> when parsed * with the radix given by the second argument. The first argument * is interpreted as representing a signed integer in the radix * specified by the second argument, exactly as if the arguments * were given to the {@link #parseInt(java.lang.String, int)} * method. The result is an <code>Integer</code> object that * represents the integer value specified by the string. * <p> * In other words, this method returns an <code>Integer</code> * object equal to the value of: * * <blockquote><code> * new Integer(Integer.parseInt(s, radix)) * </code></blockquote> * * @param s the string to be parsed. * @param radix the radix to be used in interpreting <code>s</code> * @return an <code>Integer</code> object holding the value * represented by the string argument in the specified * radix. * @exception NumberFormatException if the <code>String</code> * does not contain a parsable <code>int</code>. */ public static Integer valueOf(String s, int radix) throws NumberFormatException { return new Integer(parseInt(s,radix)); } /** * Returns an <code>Integer</code> object holding the * value of the specified <code>String</code>. The argument is * interpreted as representing a signed decimal integer, exactly * as if the argument were given to the {@link * #parseInt(java.lang.String)} method. The result is an * <code>Integer</code> object that represents the integer value * specified by the string. * <p> * In other words, this method returns an <code>Integer</code> * object equal to the value of: * * <blockquote><code> * new Integer(Integer.parseInt(s)) * </code></blockquote> * * @param s the string to be parsed. * @return an <code>Integer</code> object holding the value * represented by the string argument. * @exception NumberFormatException if the string cannot be parsed * as an integer. */ public static Integer valueOf(String s) throws NumberFormatException { return new Integer(parseInt(s, 10)); } /** * The value of the <code>Integer</code>. * * @serial */ private int value; /** * Constructs a newly allocated <code>Integer</code> object that * represents the specified <code>int</code> value. * * @param value the value to be represented by the * <code>Integer</code> object. */ public Integer(int value) { this.value = value; } /** * Constructs a newly allocated <code>Integer</code> object that * represents the <code>int</code> value indicated by the * <code>String</code> parameter. The string is converted to an * <code>int</code> value in exactly the manner used by the * <code>parseInt</code> method for radix 10. * * @param s the <code>String</code> to be converted to an * <code>Integer</code>. * @exception NumberFormatException if the <code>String</code> does not * contain a parsable integer. * @see java.lang.Integer#parseInt(java.lang.String, int) */ public Integer(String s) throws NumberFormatException { this.value = parseInt(s, 10); } /** * Returns the value of this <code>Integer</code> as a * <code>byte</code>. */ public byte byteValue() { return (byte)value; } /** * Returns the value of this <code>Integer</code> as a * <code>short</code>. */ public short shortValue() { return (short)value; } /** * Returns the value of this <code>Integer</code> as an * <code>int</code>. */ public int intValue() { return value; } /** * Returns the value of this <code>Integer</code> as a * <code>long</code>. */ public long longValue() { return (long)value; } /** * Returns the value of this <code>Integer</code> as a * <code>float</code>. */ public float floatValue() { return (float)value; } /** * Returns the value of this <code>Integer</code> as a * <code>double</code>. */ public double doubleValue() { return (double)value; } /** * Returns a <code>String</code> object representing this * <code>Integer</code>'s value. The value is converted to signed * decimal representation and returned as a string, exactly as if * the integer value were given as an argument to the {@link * java.lang.Integer#toString(int)} method. * * @return a string representation of the value of this object in * base 10. */ public String toString() { return String.valueOf(value); } /** * Returns a hash code for this <code>Integer</code>. * * @return a hash code value for this object, equal to the * primitive <code>int</code> value represented by this * <code>Integer</code> object. */ public int hashCode() { return value; } /** * Compares this object to the specified object. The result is * <code>true</code> if and only if the argument is not * <code>null</code> and is an <code>Integer</code> object that * contains the same <code>int</code> value as this object. * * @param obj the object to compare with. * @return <code>true</code> if the objects are the same; * <code>false</code> otherwise. */ public boolean equals(Object obj) { if (obj instanceof Integer) { return value == ((Integer)obj).intValue(); } return false; } /** * Determines the integer value of the system property with the * specified name. * <p> * The first argument is treated as the name of a system property. * System properties are accessible through the * {@link java.lang.System#getProperty(java.lang.String)} method. The * string value of this property is then interpreted as an integer * value and an <code>Integer</code> object representing this value is * returned. Details of possible numeric formats can be found with * the definition of <code>getProperty</code>. * <p> * If there is no property with the specified name, if the specified name * is empty or <code>null</code>, or if the property does not have * the correct numeric format, then <code>null</code> is returned. * <p> * In other words, this method returns an <code>Integer</code> * object equal to the value of: * * <blockquote><code> * getInteger(nm, null) * </code></blockquote> * * @param nm property name. * @return the <code>Integer</code> value of the property. * @see java.lang.System#getProperty(java.lang.String) * @see java.lang.System#getProperty(java.lang.String, java.lang.String) */ public static Integer getInteger(String nm) { return getInteger(nm, null); } /** * Determines the integer value of the system property with the * specified name. * <p> * The first argument is treated as the name of a system property. * System properties are accessible through the {@link * java.lang.System#getProperty(java.lang.String)} method. The * string value of this property is then interpreted as an integer * value and an <code>Integer</code> object representing this value is * returned. Details of possible numeric formats can be found with * the definition of <code>getProperty</code>. * <p> * The second argument is the default value. An <code>Integer</code> object * that represents the value of the second argument is returned if there * is no property of the specified name, if the property does not have * the correct numeric format, or if the specified name is empty or * <code>null</code>. * <p> * In other words, this method returns an <code>Integer</code> object * equal to the value of: * <blockquote><code> * getInteger(nm, new Integer(val)) * </code></blockquote> * but in practice it may be implemented in a manner such as: * <blockquote><pre> * Integer result = getInteger(nm, null); * return (result == null) ? new Integer(val) : result; * </pre></blockquote> * to avoid the unnecessary allocation of an <code>Integer</code> * object when the default value is not needed. * * @param nm property name. * @param val default value. * @return the <code>Integer</code> value of the property. * @see java.lang.System#getProperty(java.lang.String) * @see java.lang.System#getProperty(java.lang.String, java.lang.String) */ public static Integer getInteger(String nm, int val) { Integer result = getInteger(nm, null); return (result == null) ? new Integer(val) : result; } /** * Returns the integer value of the system property with the * specified name. The first argument is treated as the name of a * system property. System properties are accessible through the * {@link java.lang.System#getProperty(java.lang.String)} method. * The string value of this property is then interpreted as an * integer value, as per the <code>Integer.decode</code> method, * and an <code>Integer</code> object representing this value is * returned. * <p> * <ul><li>If the property value begins with the two ASCII characters * <code>0x</code> or the ASCII character <code>#</code>, not * followed by a minus sign, then the rest of it is parsed as a * hexadecimal integer exactly as by the method * {@link #valueOf(java.lang.String, int)} with radix 16. * <li>If the property value begins with the ASCII character * <code>0</code> followed by another character, it is parsed as an * octal integer exactly as by the method * {@link #valueOf(java.lang.String, int)} with radix 8. * <li>Otherwise, the property value is parsed as a decimal integer * exactly as by the method {@link #valueOf(java.lang.String, int)} * with radix 10. * </ul><p> * The second argument is the default value. The default value is * returned if there is no property of the specified name, if the * property does not have the correct numeric format, or if the * specified name is empty or <code>null</code>. * * @param nm property name. * @param val default value. * @return the <code>Integer</code> value of the property. * @see java.lang.System#getProperty(java.lang.String) * @see java.lang.System#getProperty(java.lang.String, java.lang.String) * @see java.lang.Integer#decode */ public static Integer getInteger(String nm, Integer val) { String v = null; try { v = System.getProperty(nm); } catch (IllegalArgumentException e) { } catch (NullPointerException e) { } if (v != null) { try { return Integer.decode(v); } catch (NumberFormatException e) { } } return val; } /** * Decodes a <code>String</code> into an <code>Integer</code>. * Accepts decimal, hexadecimal, and octal numbers numbers given * by the following grammar: * * <blockquote> * <dl> * <dt><i>DecodableString:</i> * <dd><i>Sign<sub>opt</sub> DecimalNumeral</i> * <dd><i>Sign<sub>opt</sub></i> <code>0x</code> <i>HexDigits</i> * <dd><i>Sign<sub>opt</sub></i> <code>0X</code> <i>HexDigits</i> * <dd><i>Sign<sub>opt</sub></i> <code>#</code> <i>HexDigits</i> * <dd><i>Sign<sub>opt</sub></i> <code>0</code> <i>OctalDigits</i> * <p> * <dt><i>Sign:</i> * <dd><code>-</code> * </dl> * </blockquote> * * <i>DecimalNumeral</i>, <i>HexDigits</i>, and <i>OctalDigits</i> * are defined in <a href="http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html#48282">§3.10.1</a> * of the <a href="http://java.sun.com/docs/books/jls/html/">Java * Language Specification</a>. * <p> * The sequence of characters following an (optional) negative * sign and/or radix specifier ("<code>0x</code>", * "<code>0X</code>", "<code>#</code>", or * leading zero) is parsed as by the <code>Integer.parseInt</code> * method with the indicated radix (10, 16, or 8). This sequence * of characters must represent a positive value or a {@link * NumberFormatException} will be thrown. The result is negated * if first character of the specified <code>String</code> is the * minus sign. No whitespace characters are permitted in the * <code>String</code>. * * @param nm the <code>String</code> to decode. * @return a <code>Integer</code> object holding the <code>int</code> * value represented by <code>nm</code> * @exception NumberFormatException if the <code>String</code> does not * contain a parsable integer. * @see java.lang.Integer#parseInt(java.lang.String, int) * @since 1.2 */ public static Integer decode(String nm) throws NumberFormatException { int radix = 10; int index = 0; boolean negative = false; Integer result; // Handle minus sign, if present if (nm.startsWith("-")) { negative = true; index++; } // Handle radix specifier, if present if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) { index += 2; radix = 16; } else if (nm.startsWith("#", index)) { index ++; radix = 16; } else if (nm.startsWith("0", index) && nm.length() > 1 + index) { index ++; radix = 8; } if (nm.startsWith("-", index)) throw new NumberFormatException("Negative sign in wrong position"); try { result = Integer.valueOf(nm.substring(index), radix); result = negative ? new Integer(-result.intValue()) : result; } catch (NumberFormatException e) { // If number is Integer.MIN_VALUE, we'll end up here. The next line // handles this case, and causes any genuine format error to be // rethrown. String constant = negative ? new String("-" + nm.substring(index)) : nm.substring(index); result = Integer.valueOf(constant, radix); } return result; } /** * Compares two <code>Integer</code> objects numerically. * * @param anotherInteger the <code>Integer</code> to be compared. * @return the value <code>0</code> if this <code>Integer</code> is * equal to the argument <code>Integer</code>; a value less than * <code>0</code> if this <code>Integer</code> is numerically less * than the argument <code>Integer</code>; and a value greater * than <code>0</code> if this <code>Integer</code> is numerically * greater than the argument <code>Integer</code> (signed * comparison). * @since 1.2 */ public int compareTo(Integer anotherInteger) { int thisVal = this.value; int anotherVal = anotherInteger.value; return (thisVal<anotherVal ? -1 : (thisVal==anotherVal ? 0 : 1)); } /** * Compares this <code>Integer</code> object to another object. * If the object is an <code>Integer</code>, this function behaves * like <code>compareTo(Integer)</code>. Otherwise, it throws a * <code>ClassCastException</code> (as <code>Integer</code> * objects are only comparable to other <code>Integer</code> * objects). * * @param o the <code>Object</code> to be compared. * @return the value <code>0</code> if the argument is a * <code>Integer</code> numerically equal to this * <code>Integer</code>; a value less than <code>0</code> * if the argument is a <code>Integer</code> numerically * greater than this <code>Integer</code>; and a value * greater than <code>0</code> if the argument is a * <code>Integer</code> numerically less than this * <code>Integer</code>. * @exception <code>ClassCastException</code> if the argument is not an * <code>Integer</code>. * @see java.lang.Comparable * @since 1.2 */ public int compareTo(Object o) { return compareTo((Integer)o); } /** use serialVersionUID from JDK 1.0.2 for interoperability */ private static final long serialVersionUID = 1360826667806852920L; }