/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package java.math; /** * Static library that provides the basic arithmetic mutable operations for * {@link BigInteger}. The operations provided are listed below. * <ul type="circle"> * <li>Addition.</li> * <li>Subtraction.</li> * <li>Comparison.</li> * </ul> * In addition to this, some <i><b>Inplace</b></i> (mutable) methods are provided. */ class Elementary { /** Just to denote that this class can't be instantiated */ private Elementary() { } /** * Compares two arrays. All elements are treated as unsigned integers. The * magnitude is the bit chain of elements in big-endian order. * * @param a the first array * @param b the second array * @param size the size of arrays * @return 1 if a > b, -1 if a < b, 0 if a == b */ static int compareArrays(final int[] a, final int[] b, final int size) { int i; for (i = size - 1; (i >= 0) && (a[i] == b[i]); i--) { ; } return ((i < 0) ? BigInteger.EQUALS : (a[i] & 0xFFFFFFFFL) < (b[i] & 0xFFFFFFFFL) ? BigInteger.LESS : BigInteger.GREATER); } /** @see BigInteger#add(BigInteger) */ static BigInteger add(BigInteger op1, BigInteger op2) { int resDigits[]; int resSign; int op1Sign = op1.sign; int op2Sign = op2.sign; if (op1Sign == 0) { return op2; } if (op2Sign == 0) { return op1; } int op1Len = op1.numberLength; int op2Len = op2.numberLength; if (op1Len + op2Len == 2) { long a = (op1.digits[0] & 0xFFFFFFFFL); long b = (op2.digits[0] & 0xFFFFFFFFL); long res; int valueLo; int valueHi; if (op1Sign == op2Sign) { res = a + b; valueLo = (int) res; valueHi = (int) (res >>> 32); return ((valueHi == 0) ? new BigInteger(op1Sign, valueLo) : new BigInteger(op1Sign, 2, new int[] { valueLo, valueHi })); } return BigInteger.valueOf((op1Sign < 0) ? (b - a) : (a - b)); } else if (op1Sign == op2Sign) { resSign = op1Sign; // an augend should not be shorter than addend resDigits = (op1Len >= op2Len) ? add(op1.digits, op1Len, op2.digits, op2Len) : add(op2.digits, op2Len, op1.digits, op1Len); } else { // signs are different int cmp = ((op1Len != op2Len) ? ((op1Len > op2Len) ? 1 : -1) : compareArrays(op1.digits, op2.digits, op1Len)); if (cmp == BigInteger.EQUALS) { return BigInteger.ZERO; } // a minuend should not be shorter than subtrahend if (cmp == BigInteger.GREATER) { resSign = op1Sign; resDigits = subtract(op1.digits, op1Len, op2.digits, op2Len); } else { resSign = op2Sign; resDigits = subtract(op2.digits, op2Len, op1.digits, op1Len); } } BigInteger res = new BigInteger(resSign, resDigits.length, resDigits); res.cutOffLeadingZeroes(); return res; } /** * Performs {@code res = a + b}. */ private static void add(int res[], int a[], int aSize, int b[], int bSize) { // PRE: a.length < max(aSize, bSize) int i; long carry = ( a[0] & 0xFFFFFFFFL ) + ( b[0] & 0xFFFFFFFFL ); res[0] = (int) carry; carry >>= 32; if (aSize >= bSize) { for (i = 1; i < bSize; i++) { carry += ( a[i] & 0xFFFFFFFFL ) + ( b[i] & 0xFFFFFFFFL ); res[i] = (int) carry; carry >>= 32; } for (; i < aSize; i++) { carry += a[i] & 0xFFFFFFFFL; res[i] = (int) carry; carry >>= 32; } } else { for (i = 1; i < aSize; i++) { carry += ( a[i] & 0xFFFFFFFFL ) + ( b[i] & 0xFFFFFFFFL ); res[i] = (int) carry; carry >>= 32; } for (; i < bSize; i++) { carry += b[i] & 0xFFFFFFFFL; res[i] = (int) carry; carry >>= 32; } } if (carry != 0) { res[i] = (int) carry; } } /** @see BigInteger#subtract(BigInteger) */ static BigInteger subtract(BigInteger op1, BigInteger op2) { int resSign; int resDigits[]; int op1Sign = op1.sign; int op2Sign = op2.sign; if (op2Sign == 0) { return op1; } if (op1Sign == 0) { return op2.negate (); } int op1Len = op1.numberLength; int op2Len = op2.numberLength; if (op1Len + op2Len == 2) { long a = ( op1.digits[0] & 0xFFFFFFFFL ); long b = ( op2.digits[0] & 0xFFFFFFFFL ); if (op1Sign < 0) { a = -a; } if (op2Sign < 0) { b = -b; } return BigInteger.valueOf (a - b); } int cmp = ( ( op1Len != op2Len ) ? ( ( op1Len > op2Len ) ? 1 : -1 ) : Elementary.compareArrays (op1.digits, op2.digits, op1Len) ); if (cmp == BigInteger.LESS) { resSign = -op2Sign; resDigits = ( op1Sign == op2Sign ) ? subtract (op2.digits, op2Len, op1.digits, op1Len) : add (op2.digits, op2Len, op1.digits, op1Len); } else { resSign = op1Sign; if (op1Sign == op2Sign) { if (cmp == BigInteger.EQUALS) { return BigInteger.ZERO; } resDigits = subtract (op1.digits, op1Len, op2.digits, op2Len); } else { resDigits = add (op1.digits, op1Len, op2.digits, op2Len); } } BigInteger res = new BigInteger (resSign, resDigits.length, resDigits); res.cutOffLeadingZeroes (); return res; } /** * Performs {@code res = a - b}. It is assumed the magnitude of a is not * less than the magnitude of b. */ private static void subtract(int res[], int a[], int aSize, int b[], int bSize) { // PRE: a[] >= b[] int i; long borrow = 0; for (i = 0; i < bSize; i++) { borrow += ( a[i] & 0xFFFFFFFFL ) - ( b[i] & 0xFFFFFFFFL ); res[i] = (int) borrow; borrow >>= 32; // -1 or 0 } for (; i < aSize; i++) { borrow += a[i] & 0xFFFFFFFFL; res[i] = (int) borrow; borrow >>= 32; // -1 or 0 } } /** * Addss the value represented by {@code b} to the value represented by * {@code a}. It is assumed the magnitude of a is not less than the * magnitude of b. * * @return {@code a + b} */ private static int[] add(int a[], int aSize, int b[], int bSize) { // PRE: a[] >= b[] int res[] = new int[aSize + 1]; add(res, a, aSize, b, bSize); return res; } /** * Performs {@code op1 += op2}. {@code op1} must have enough place to store * the result (i.e. {@code op1.bitLength() >= op2.bitLength()}). Both * should be positive (i.e. {@code op1 >= op2}). * * @param op1 the input minuend, and the output result. * @param op2 the addend */ static void inplaceAdd(BigInteger op1, BigInteger op2) { // PRE: op1 >= op2 > 0 add (op1.digits, op1.digits, op1.numberLength, op2.digits, op2.numberLength); op1.numberLength = Math.min (Math.max (op1.numberLength, op2.numberLength) + 1, op1.digits.length); op1.cutOffLeadingZeroes (); op1.unCache(); } /** * Adds an integer value to the array of integers remembering carry. * * @return a possible generated carry (0 or 1) */ static int inplaceAdd(int a[], final int aSize, final int addend) { long carry = addend & 0xFFFFFFFFL; for (int i = 0; (carry != 0) && (i < aSize); i++) { carry += a[i] & 0xFFFFFFFFL; a[i] = (int) carry; carry >>= 32; } return (int) carry; } /** * Performs: {@code op1 += addend}. The number must to have place to hold a * possible carry. */ static void inplaceAdd(BigInteger op1, final int addend) { int carry = inplaceAdd(op1.digits, op1.numberLength, addend); if (carry == 1) { op1.digits[op1.numberLength] = 1; op1.numberLength++; } op1.unCache(); } /** * Performs {@code op1 -= op2}. {@code op1} must have enough place to store * the result (i.e. {@code op1.bitLength() >= op2.bitLength()}). Both * should be positive (what implies that {@code op1 >= op2}). * * @param op1 * the input minuend, and the output result. * @param op2 * the subtrahend */ static void inplaceSubtract(BigInteger op1, BigInteger op2) { // PRE: op1 >= op2 > 0 subtract (op1.digits, op1.digits, op1.numberLength, op2.digits, op2.numberLength); op1.cutOffLeadingZeroes (); op1.unCache(); } /** * Performs {@code res = b - a} */ private static void inverseSubtract(int res[], int a[], int aSize, int b[], int bSize) { int i; long borrow = 0; if (aSize < bSize) { for (i = 0; i < aSize; i++) { borrow += ( b[i] & 0xFFFFFFFFL ) - ( a[i] & 0xFFFFFFFFL ); res[i] = (int) borrow; borrow >>= 32; // -1 or 0 } for (; i < bSize; i++) { borrow += b[i] & 0xFFFFFFFFL; res[i] = (int) borrow; borrow >>= 32; // -1 or 0 } } else { for (i = 0; i < bSize; i++) { borrow += ( b[i] & 0xFFFFFFFFL ) - ( a[i] & 0xFFFFFFFFL ); res[i] = (int) borrow; borrow >>= 32; // -1 or 0 } for (; i < aSize; i++) { borrow -= a[i] & 0xFFFFFFFFL; res[i] = (int) borrow; borrow >>= 32; // -1 or 0 } } } /** * Subtracts the value represented by {@code b} from the value represented * by {@code a}. It is assumed the magnitude of a is not less than the * magnitude of b. * * @return {@code a - b} */ private static int[] subtract(int a[], int aSize, int b[], int bSize) { // PRE: a[] >= b[] int res[] = new int[aSize]; subtract(res, a, aSize, b, bSize); return res; } /** * Same as * * @link #inplaceSubtract(BigInteger, BigInteger), but without the * restriction of non-positive values * @param op1 * should have enough space to save the result * @param op2 */ static void completeInPlaceSubtract(BigInteger op1, BigInteger op2) { int resultSign = op1.compareTo (op2); if (op1.sign == 0) { System.arraycopy (op2.digits, 0, op1.digits, 0, op2.numberLength); op1.sign = -op2.sign; } else if (op1.sign != op2.sign) { add (op1.digits, op1.digits, op1.numberLength, op2.digits, op2.numberLength); op1.sign = resultSign; } else { int sign = unsignedArraysCompare (op1.digits, op2.digits, op1.numberLength, op2.numberLength); if (sign > 0) { subtract (op1.digits, op1.digits, op1.numberLength, op2.digits, op2.numberLength); // op1 = op1 - op2 // op1.sign remains equal } else { inverseSubtract (op1.digits, op1.digits, op1.numberLength, op2.digits, op2.numberLength); // op1 = op2 - op1 op1.sign = -op1.sign; } } op1.numberLength = Math.max (op1.numberLength, op2.numberLength) + 1; op1.cutOffLeadingZeroes (); op1.unCache(); } /** * Same as @link #inplaceAdd(BigInteger, BigInteger), but without the restriction of * non-positive values * @param op1 any number * @param op2 any number */ static void completeInPlaceAdd(BigInteger op1, BigInteger op2) { if (op1.sign == 0) System.arraycopy (op2.digits, 0, op1.digits, 0, op2.numberLength); else if (op2.sign == 0) return; else if (op1.sign == op2.sign) add (op1.digits, op1.digits, op1.numberLength, op2.digits, op2.numberLength); else { int sign = unsignedArraysCompare(op1.digits, op2.digits, op1.numberLength, op2.numberLength); if (sign > 0) subtract (op1.digits, op1.digits, op1.numberLength, op2.digits, op2.numberLength); else { inverseSubtract (op1.digits, op1.digits, op1.numberLength, op2.digits, op2.numberLength); op1.sign = -op1.sign; } } op1.numberLength = Math.max (op1.numberLength, op2.numberLength) + 1; op1.cutOffLeadingZeroes (); op1.unCache(); } /** * Compares two arrays, representing unsigned integer in little-endian order. * Returns +1,0,-1 if a is - respective - greater, equal or lesser then b */ private static int unsignedArraysCompare(int[] a, int[] b, int aSize, int bSize){ if (aSize > bSize) return 1; else if (aSize < bSize) return -1; else { int i; for (i = aSize - 1; i >= 0 && a[i] == b[i]; i-- ) ; return i < 0 ? BigInteger.EQUALS : (( a[i] & 0xFFFFFFFFL ) < (b[i] & 0xFFFFFFFFL ) ? BigInteger.LESS : BigInteger.GREATER) ; } } }