/* * Copyright (C) 2016 The Guava Authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.google.common.graph; import static com.google.common.base.Preconditions.checkNotNull; import static com.google.common.base.Preconditions.checkState; import static com.google.common.graph.Graphs.checkNonNegative; import static com.google.common.graph.Graphs.checkPositive; import com.google.common.collect.Iterables; import com.google.common.collect.Iterators; import com.google.common.collect.Sets; import com.google.common.collect.UnmodifiableIterator; import com.google.common.math.IntMath; import java.util.AbstractSet; import java.util.Collections; import java.util.Map; import java.util.Set; import javax.annotation.Nullable; /** * A base implementation of {@link NetworkConnections} for directed networks. * * @author James Sexton * @param <N> Node parameter type * @param <E> Edge parameter type */ abstract class AbstractDirectedNetworkConnections<N, E> implements NetworkConnections<N, E> { /** Keys are edges incoming to the origin node, values are the source node. */ protected final Map<E, N> inEdgeMap; /** Keys are edges outgoing from the origin node, values are the target node. */ protected final Map<E, N> outEdgeMap; private int selfLoopCount; protected AbstractDirectedNetworkConnections( Map<E, N> inEdgeMap, Map<E, N> outEdgeMap, int selfLoopCount) { this.inEdgeMap = checkNotNull(inEdgeMap); this.outEdgeMap = checkNotNull(outEdgeMap); this.selfLoopCount = checkNonNegative(selfLoopCount); checkState(selfLoopCount <= inEdgeMap.size() && selfLoopCount <= outEdgeMap.size()); } @Override public Set<N> adjacentNodes() { return Sets.union(predecessors(), successors()); } @Override public Set<E> incidentEdges() { return new AbstractSet<E>() { @Override public UnmodifiableIterator<E> iterator() { Iterable<E> incidentEdges = (selfLoopCount == 0) ? Iterables.concat(inEdgeMap.keySet(), outEdgeMap.keySet()) : Sets.union(inEdgeMap.keySet(), outEdgeMap.keySet()); return Iterators.unmodifiableIterator(incidentEdges.iterator()); } @Override public int size() { return IntMath.saturatedAdd(inEdgeMap.size(), outEdgeMap.size() - selfLoopCount); } @Override public boolean contains(@Nullable Object obj) { return inEdgeMap.containsKey(obj) || outEdgeMap.containsKey(obj); } }; } @Override public Set<E> inEdges() { return Collections.unmodifiableSet(inEdgeMap.keySet()); } @Override public Set<E> outEdges() { return Collections.unmodifiableSet(outEdgeMap.keySet()); } @Override public N oppositeNode(Object edge) { // Since the reference node is defined to be 'source' for directed graphs, // we can assume this edge lives in the set of outgoing edges. return checkNotNull(outEdgeMap.get(edge)); } @Override public N removeInEdge(Object edge, boolean isSelfLoop) { if (isSelfLoop) { checkNonNegative(--selfLoopCount); } N previousNode = inEdgeMap.remove(edge); return checkNotNull(previousNode); } @Override public N removeOutEdge(Object edge) { N previousNode = outEdgeMap.remove(edge); return checkNotNull(previousNode); } @Override public void addInEdge(E edge, N node, boolean isSelfLoop) { if (isSelfLoop) { checkPositive(++selfLoopCount); } N previousNode = inEdgeMap.put(edge, node); checkState(previousNode == null); } @Override public void addOutEdge(E edge, N node) { N previousNode = outEdgeMap.put(edge, node); checkState(previousNode == null); } }