/* * Copyright (C) 2008 The Guava Authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.google.common.base; import static com.google.common.base.Preconditions.checkArgument; import static com.google.common.base.Preconditions.checkNotNull; import com.google.common.annotations.Beta; import com.google.common.annotations.GwtCompatible; import java.util.Arrays; import javax.annotation.CheckReturnValue; /** * Determines a true or false value for any Java {@code char} value, just as {@link Predicate} does * for any {@link Object}. Also offers basic text processing methods based on this function. * Implementations are strongly encouraged to be side-effect-free and immutable. * * <p>Throughout the documentation of this class, the phrase "matching character" is used to mean * "any character {@code c} for which {@code this.matches(c)} returns {@code true}". * * <p><b>Note:</b> This class deals only with {@code char} values; it does not understand * supplementary Unicode code points in the range {@code 0x10000} to {@code 0x10FFFF}. Such logical * characters are encoded into a {@code String} using surrogate pairs, and a {@code CharMatcher} * treats these just as two separate characters. * * <p>Example usages: <pre> * String trimmed = {@link #WHITESPACE WHITESPACE}.{@link #trimFrom trimFrom}(userInput); * if ({@link #ASCII ASCII}.{@link #matchesAllOf matchesAllOf}(s)) { ... }</pre> * * <p>See the Guava User Guide article on <a href= * "http://code.google.com/p/guava-libraries/wiki/StringsExplained#CharMatcher"> * {@code CharMatcher}</a>. * * @author Kevin Bourrillion * @since 1.0 */ @Beta // Possibly change from chars to code points; decide constants vs. methods @GwtCompatible(emulated = true) public abstract class CharMatcher implements Predicate<Character> { // Constants /** * Determines whether a character is a breaking whitespace (that is, a whitespace which can be * interpreted as a break between words for formatting purposes). See {@link #WHITESPACE} for a * discussion of that term. * * @since 2.0 */ public static final CharMatcher BREAKING_WHITESPACE = anyOf("\t\n\013\f\r \u0085\u1680\u2028\u2029\u205f\u3000") .or(inRange('\u2000', '\u2006')) .or(inRange('\u2008', '\u200a')) .withToString("CharMatcher.BREAKING_WHITESPACE") .precomputed(); /** * Determines whether a character is ASCII, meaning that its code point is less than 128. */ public static final CharMatcher ASCII = inRange('\0', '\u007f', "CharMatcher.ASCII"); /** * Determines whether a character is a digit according to * <a href="http://unicode.org/cldr/utility/list-unicodeset.jsp?a=%5Cp%7Bdigit%7D">Unicode</a>. */ public static final CharMatcher DIGIT; static { CharMatcher digit = inRange('0', '9'); String zeroes = "\u0660\u06f0\u07c0\u0966\u09e6\u0a66\u0ae6\u0b66\u0be6\u0c66" + "\u0ce6\u0d66\u0e50\u0ed0\u0f20\u1040\u1090\u17e0\u1810\u1946" + "\u19d0\u1b50\u1bb0\u1c40\u1c50\ua620\ua8d0\ua900\uaa50\uff10"; for (char base : zeroes.toCharArray()) { digit = digit.or(inRange(base, (char) (base + 9))); } DIGIT = digit.withToString("CharMatcher.DIGIT").precomputed(); } /** * Determines whether a character is a digit according to {@link Character#isDigit(char) Java's * definition}. If you only care to match ASCII digits, you can use {@code inRange('0', '9')}. */ public static final CharMatcher JAVA_DIGIT = new CharMatcher("CharMatcher.JAVA_DIGIT") { @Override public boolean matches(char c) { return Character.isDigit(c); } }; /** * Determines whether a character is a letter according to {@link Character#isLetter(char) Java's * definition}. If you only care to match letters of the Latin alphabet, you can use {@code * inRange('a', 'z').or(inRange('A', 'Z'))}. */ public static final CharMatcher JAVA_LETTER = new CharMatcher("CharMatcher.JAVA_LETTER") { @Override public boolean matches(char c) { return Character.isLetter(c); } }; /** * Determines whether a character is a letter or digit according to {@link * Character#isLetterOrDigit(char) Java's definition}. */ public static final CharMatcher JAVA_LETTER_OR_DIGIT = new CharMatcher("CharMatcher.JAVA_LETTER_OR_DIGIT") { @Override public boolean matches(char c) { return Character.isLetterOrDigit(c); } }; /** * Determines whether a character is upper case according to {@link Character#isUpperCase(char) * Java's definition}. */ public static final CharMatcher JAVA_UPPER_CASE = new CharMatcher("CharMatcher.JAVA_UPPER_CASE") { @Override public boolean matches(char c) { return Character.isUpperCase(c); } }; /** * Determines whether a character is lower case according to {@link Character#isLowerCase(char) * Java's definition}. */ public static final CharMatcher JAVA_LOWER_CASE = new CharMatcher("CharMatcher.JAVA_LOWER_CASE") { @Override public boolean matches(char c) { return Character.isLowerCase(c); } }; /** * Determines whether a character is an ISO control character as specified by {@link * Character#isISOControl(char)}. */ public static final CharMatcher JAVA_ISO_CONTROL = inRange('\u0000', '\u001f') .or(inRange('\u007f', '\u009f')) .withToString("CharMatcher.JAVA_ISO_CONTROL"); /** * Determines whether a character is invisible; that is, if its Unicode category is any of * SPACE_SEPARATOR, LINE_SEPARATOR, PARAGRAPH_SEPARATOR, CONTROL, FORMAT, SURROGATE, and * PRIVATE_USE according to ICU4J. */ public static final CharMatcher INVISIBLE = inRange('\u0000', '\u0020') .or(inRange('\u007f', '\u00a0')) .or(is('\u00ad')) .or(inRange('\u0600', '\u0604')) .or(anyOf("\u06dd\u070f\u1680\u180e")) .or(inRange('\u2000', '\u200f')) .or(inRange('\u2028', '\u202f')) .or(inRange('\u205f', '\u2064')) .or(inRange('\u206a', '\u206f')) .or(is('\u3000')) .or(inRange('\ud800', '\uf8ff')) .or(anyOf("\ufeff\ufff9\ufffa\ufffb")) .withToString("CharMatcher.INVISIBLE") .precomputed(); /** * Determines whether a character is single-width (not double-width). When in doubt, this matcher * errs on the side of returning {@code false} (that is, it tends to assume a character is * double-width). * * <p><b>Note:</b> as the reference file evolves, we will modify this constant to keep it up to * date. */ public static final CharMatcher SINGLE_WIDTH = inRange('\u0000', '\u04f9') .or(is('\u05be')) .or(inRange('\u05d0', '\u05ea')) .or(is('\u05f3')) .or(is('\u05f4')) .or(inRange('\u0600', '\u06ff')) .or(inRange('\u0750', '\u077f')) .or(inRange('\u0e00', '\u0e7f')) .or(inRange('\u1e00', '\u20af')) .or(inRange('\u2100', '\u213a')) .or(inRange('\ufb50', '\ufdff')) .or(inRange('\ufe70', '\ufeff')) .or(inRange('\uff61', '\uffdc')) .withToString("CharMatcher.SINGLE_WIDTH") .precomputed(); /** Matches any character. */ public static final CharMatcher ANY = new FastMatcher("CharMatcher.ANY") { @Override public boolean matches(char c) { return true; } @Override public int indexIn(CharSequence sequence) { return (sequence.length() == 0) ? -1 : 0; } @Override public int indexIn(CharSequence sequence, int start) { int length = sequence.length(); Preconditions.checkPositionIndex(start, length); return (start == length) ? -1 : start; } @Override public int lastIndexIn(CharSequence sequence) { return sequence.length() - 1; } @Override public boolean matchesAllOf(CharSequence sequence) { checkNotNull(sequence); return true; } @Override public boolean matchesNoneOf(CharSequence sequence) { return sequence.length() == 0; } @Override public String removeFrom(CharSequence sequence) { checkNotNull(sequence); return ""; } @Override public String replaceFrom(CharSequence sequence, char replacement) { char[] array = new char[sequence.length()]; Arrays.fill(array, replacement); return new String(array); } @Override public String replaceFrom(CharSequence sequence, CharSequence replacement) { StringBuilder retval = new StringBuilder(sequence.length() * replacement.length()); for (int i = 0; i < sequence.length(); i++) { retval.append(replacement); } return retval.toString(); } @Override public String collapseFrom(CharSequence sequence, char replacement) { return (sequence.length() == 0) ? "" : String.valueOf(replacement); } @Override public String trimFrom(CharSequence sequence) { checkNotNull(sequence); return ""; } @Override public int countIn(CharSequence sequence) { return sequence.length(); } @Override public CharMatcher and(CharMatcher other) { return checkNotNull(other); } @Override public CharMatcher or(CharMatcher other) { checkNotNull(other); return this; } @Override public CharMatcher negate() { return NONE; } }; /** Matches no characters. */ public static final CharMatcher NONE = new FastMatcher("CharMatcher.NONE") { @Override public boolean matches(char c) { return false; } @Override public int indexIn(CharSequence sequence) { checkNotNull(sequence); return -1; } @Override public int indexIn(CharSequence sequence, int start) { int length = sequence.length(); Preconditions.checkPositionIndex(start, length); return -1; } @Override public int lastIndexIn(CharSequence sequence) { checkNotNull(sequence); return -1; } @Override public boolean matchesAllOf(CharSequence sequence) { return sequence.length() == 0; } @Override public boolean matchesNoneOf(CharSequence sequence) { checkNotNull(sequence); return true; } @Override public String removeFrom(CharSequence sequence) { return sequence.toString(); } @Override public String replaceFrom(CharSequence sequence, char replacement) { return sequence.toString(); } @Override public String replaceFrom(CharSequence sequence, CharSequence replacement) { checkNotNull(replacement); return sequence.toString(); } @Override public String collapseFrom(CharSequence sequence, char replacement) { return sequence.toString(); } @Override public String trimFrom(CharSequence sequence) { return sequence.toString(); } @Override public int countIn(CharSequence sequence) { checkNotNull(sequence); return 0; } @Override public CharMatcher and(CharMatcher other) { checkNotNull(other); return this; } @Override public CharMatcher or(CharMatcher other) { return checkNotNull(other); } @Override public CharMatcher negate() { return ANY; } }; // Static factories /** * Returns a {@code char} matcher that matches only one specified character. */ public static CharMatcher is(final char match) { String description = new StringBuilder("CharMatcher.is(") .append(Integer.toHexString(match)) .append(")") .toString(); return new FastMatcher(description) { @Override public boolean matches(char c) { return c == match; } @Override public String replaceFrom(CharSequence sequence, char replacement) { return sequence.toString().replace(match, replacement); } @Override public CharMatcher and(CharMatcher other) { return other.matches(match) ? this : NONE; } @Override public CharMatcher or(CharMatcher other) { return other.matches(match) ? other : super.or(other); } @Override public CharMatcher negate() { return isNot(match); } }; } /** * Returns a {@code char} matcher that matches any character except the one specified. * * <p>To negate another {@code CharMatcher}, use {@link #negate()}. */ public static CharMatcher isNot(final char match) { String description = new StringBuilder("CharMatcher.isNot(") .append(Integer.toHexString(match)) .append(")") .toString(); return new FastMatcher(description) { @Override public boolean matches(char c) { return c != match; } @Override public CharMatcher and(CharMatcher other) { return other.matches(match) ? super.and(other) : other; } @Override public CharMatcher or(CharMatcher other) { return other.matches(match) ? ANY : this; } @Override public CharMatcher negate() { return is(match); } }; } /** * Returns a {@code char} matcher that matches any character present in the given character * sequence. */ public static CharMatcher anyOf(final CharSequence sequence) { switch (sequence.length()) { case 0: return NONE; case 1: return is(sequence.charAt(0)); case 2: return isEither(sequence.charAt(0), sequence.charAt(1)); } // TODO(user): is it potentially worth just going ahead and building a precomputed matcher? final char[] chars = sequence.toString().toCharArray(); Arrays.sort(chars); return new CharMatcher(new StringBuilder("CharMatcher.anyOf(\"").append(chars) .append("\")").toString()) { @Override public boolean matches(char c) { return Arrays.binarySearch(chars, c) >= 0; } }; } private static CharMatcher isEither( final char match1, final char match2) { String toString = new StringBuilder("CharMatcher.anyOf(\"") .append(match1) .append(match2) .append("\")") .toString(); return new FastMatcher(toString) { @Override public boolean matches(char c) { return c == match1 || c == match2; } }; } /** * Returns a {@code char} matcher that matches any character not present in the given character * sequence. */ public static CharMatcher noneOf(CharSequence sequence) { return anyOf(sequence).negate(); } /** * Returns a {@code char} matcher that matches any character in a given range (both endpoints are * inclusive). For example, to match any lowercase letter of the English alphabet, use {@code * CharMatcher.inRange('a', 'z')}. * * @throws IllegalArgumentException if {@code endInclusive < startInclusive} */ public static CharMatcher inRange(final char startInclusive, final char endInclusive) { checkArgument(endInclusive >= startInclusive); String description = new StringBuilder("CharMatcher.inRange(") .append(Integer.toHexString(startInclusive)) .append(", ") .append(Integer.toHexString(endInclusive)) .append(")") .toString(); return inRange(startInclusive, endInclusive, description); } static CharMatcher inRange(final char startInclusive, final char endInclusive, String description) { return new FastMatcher(description) { @Override public boolean matches(char c) { return startInclusive <= c && c <= endInclusive; } }; } /** * Returns a matcher with identical behavior to the given {@link Character}-based predicate, but * which operates on primitive {@code char} instances instead. */ public static CharMatcher forPredicate(final Predicate<? super Character> predicate) { checkNotNull(predicate); if (predicate instanceof CharMatcher) { return (CharMatcher) predicate; } String description = new StringBuilder("CharMatcher.forPredicate(") .append(predicate) .append(')') .toString(); return new CharMatcher(description) { @Override public boolean matches(char c) { return predicate.apply(c); } @Override public boolean apply(Character character) { return predicate.apply(checkNotNull(character)); } }; } // State final String description; // Constructors /** * Sets the {@code toString()} from the given description. */ CharMatcher(String description) { this.description = description; } /** * Constructor for use by subclasses. When subclassing, you may want to override * {@code toString()} to provide a useful description. */ protected CharMatcher() { description = "UnknownCharMatcher"; } // Abstract methods /** Determines a true or false value for the given character. */ public abstract boolean matches(char c); // Non-static factories /** * Returns a matcher that matches any character not matched by this matcher. */ public CharMatcher negate() { return new NegatedMatcher(this); } private static class NegatedMatcher extends CharMatcher { final CharMatcher original; NegatedMatcher(String toString, CharMatcher original) { super(toString); this.original = original; } NegatedMatcher(CharMatcher original) { this(original + ".negate()", original); } @Override public boolean matches(char c) { return !original.matches(c); } @Override public boolean matchesAllOf(CharSequence sequence) { return original.matchesNoneOf(sequence); } @Override public boolean matchesNoneOf(CharSequence sequence) { return original.matchesAllOf(sequence); } @Override public int countIn(CharSequence sequence) { return sequence.length() - original.countIn(sequence); } @Override public CharMatcher negate() { return original; } @Override CharMatcher withToString(String description) { return new NegatedMatcher(description, original); } } /** * Returns a matcher that matches any character matched by both this matcher and {@code other}. */ public CharMatcher and(CharMatcher other) { return new And(this, checkNotNull(other)); } private static class And extends CharMatcher { final CharMatcher first; final CharMatcher second; And(CharMatcher a, CharMatcher b) { this(a, b, "CharMatcher.and(" + a + ", " + b + ")"); } And(CharMatcher a, CharMatcher b, String description) { super(description); first = checkNotNull(a); second = checkNotNull(b); } @Override public boolean matches(char c) { return first.matches(c) && second.matches(c); } @Override CharMatcher withToString(String description) { return new And(first, second, description); } } /** * Returns a matcher that matches any character matched by either this matcher or {@code other}. */ public CharMatcher or(CharMatcher other) { return new Or(this, checkNotNull(other)); } private static class Or extends CharMatcher { final CharMatcher first; final CharMatcher second; Or(CharMatcher a, CharMatcher b, String description) { super(description); first = checkNotNull(a); second = checkNotNull(b); } Or(CharMatcher a, CharMatcher b) { this(a, b, "CharMatcher.or(" + a + ", " + b + ")"); } @Override public boolean matches(char c) { return first.matches(c) || second.matches(c); } @Override CharMatcher withToString(String description) { return new Or(first, second, description); } } /** * Returns a {@code char} matcher functionally equivalent to this one, but which may be faster to * query than the original; your mileage may vary. Precomputation takes time and is likely to be * worthwhile only if the precomputed matcher is queried many thousands of times. * * <p>This method has no effect (returns {@code this}) when called in GWT: it's unclear whether a * precomputed matcher is faster, but it certainly consumes more memory, which doesn't seem like a * worthwhile tradeoff in a browser. */ public CharMatcher precomputed() { return Platform.precomputeCharMatcher(this); } /** * Subclasses should provide a new CharMatcher with the same characteristics as {@code this}, * but with their {@code toString} method overridden with the new description. * * <p>This is unsupported by default. */ CharMatcher withToString(String description) { throw new UnsupportedOperationException(); } private static final int DISTINCT_CHARS = Character.MAX_VALUE - Character.MIN_VALUE + 1; /** * A matcher for which precomputation will not yield any significant benefit. */ abstract static class FastMatcher extends CharMatcher { FastMatcher() { super(); } FastMatcher(String description) { super(description); } @Override public final CharMatcher precomputed() { return this; } @Override public CharMatcher negate() { return new NegatedFastMatcher(this); } } static final class NegatedFastMatcher extends NegatedMatcher { NegatedFastMatcher(CharMatcher original) { super(original); } NegatedFastMatcher(String toString, CharMatcher original) { super(toString, original); } @Override public final CharMatcher precomputed() { return this; } @Override CharMatcher withToString(String description) { return new NegatedFastMatcher(description, original); } } // Text processing routines /** * Returns {@code true} if a character sequence contains at least one matching character. * Equivalent to {@code !matchesNoneOf(sequence)}. * * <p>The default implementation iterates over the sequence, invoking {@link #matches} for each * character, until this returns {@code true} or the end is reached. * * @param sequence the character sequence to examine, possibly empty * @return {@code true} if this matcher matches at least one character in the sequence * @since 8.0 */ public boolean matchesAnyOf(CharSequence sequence) { return !matchesNoneOf(sequence); } /** * Returns {@code true} if a character sequence contains only matching characters. * * <p>The default implementation iterates over the sequence, invoking {@link #matches} for each * character, until this returns {@code false} or the end is reached. * * @param sequence the character sequence to examine, possibly empty * @return {@code true} if this matcher matches every character in the sequence, including when * the sequence is empty */ public boolean matchesAllOf(CharSequence sequence) { for (int i = sequence.length() - 1; i >= 0; i--) { if (!matches(sequence.charAt(i))) { return false; } } return true; } /** * Returns {@code true} if a character sequence contains no matching characters. Equivalent to * {@code !matchesAnyOf(sequence)}. * * <p>The default implementation iterates over the sequence, invoking {@link #matches} for each * character, until this returns {@code false} or the end is reached. * * @param sequence the character sequence to examine, possibly empty * @return {@code true} if this matcher matches every character in the sequence, including when * the sequence is empty */ public boolean matchesNoneOf(CharSequence sequence) { return indexIn(sequence) == -1; } /** * Returns the index of the first matching character in a character sequence, or {@code -1} if no * matching character is present. * * <p>The default implementation iterates over the sequence in forward order calling {@link * #matches} for each character. * * @param sequence the character sequence to examine from the beginning * @return an index, or {@code -1} if no character matches */ public int indexIn(CharSequence sequence) { int length = sequence.length(); for (int i = 0; i < length; i++) { if (matches(sequence.charAt(i))) { return i; } } return -1; } /** * Returns the index of the first matching character in a character sequence, starting from a * given position, or {@code -1} if no character matches after that position. * * <p>The default implementation iterates over the sequence in forward order, beginning at {@code * start}, calling {@link #matches} for each character. * * @param sequence the character sequence to examine * @param start the first index to examine; must be nonnegative and no greater than {@code * sequence.length()} * @return the index of the first matching character, guaranteed to be no less than {@code start}, * or {@code -1} if no character matches * @throws IndexOutOfBoundsException if start is negative or greater than {@code * sequence.length()} */ public int indexIn(CharSequence sequence, int start) { int length = sequence.length(); Preconditions.checkPositionIndex(start, length); for (int i = start; i < length; i++) { if (matches(sequence.charAt(i))) { return i; } } return -1; } /** * Returns the index of the last matching character in a character sequence, or {@code -1} if no * matching character is present. * * <p>The default implementation iterates over the sequence in reverse order calling {@link * #matches} for each character. * * @param sequence the character sequence to examine from the end * @return an index, or {@code -1} if no character matches */ public int lastIndexIn(CharSequence sequence) { for (int i = sequence.length() - 1; i >= 0; i--) { if (matches(sequence.charAt(i))) { return i; } } return -1; } /** * Returns the number of matching characters found in a character sequence. */ public int countIn(CharSequence sequence) { int count = 0; for (int i = 0; i < sequence.length(); i++) { if (matches(sequence.charAt(i))) { count++; } } return count; } /** * Returns a string containing all non-matching characters of a character sequence, in order. For * example: <pre> {@code * * CharMatcher.is('a').removeFrom("bazaar")}</pre> * * ... returns {@code "bzr"}. */ @CheckReturnValue public String removeFrom(CharSequence sequence) { String string = sequence.toString(); int pos = indexIn(string); if (pos == -1) { return string; } char[] chars = string.toCharArray(); int spread = 1; // This unusual loop comes from extensive benchmarking OUT: while (true) { pos++; while (true) { if (pos == chars.length) { break OUT; } if (matches(chars[pos])) { break; } chars[pos - spread] = chars[pos]; pos++; } spread++; } return new String(chars, 0, pos - spread); } /** * Returns a string containing all matching characters of a character sequence, in order. For * example: <pre> {@code * * CharMatcher.is('a').retainFrom("bazaar")}</pre> * * ... returns {@code "aaa"}. */ @CheckReturnValue public String retainFrom(CharSequence sequence) { return negate().removeFrom(sequence); } /** * Returns a string copy of the input character sequence, with each character that matches this * matcher replaced by a given replacement character. For example: <pre> {@code * * CharMatcher.is('a').replaceFrom("radar", 'o')}</pre> * * ... returns {@code "rodor"}. * * <p>The default implementation uses {@link #indexIn(CharSequence)} to find the first matching * character, then iterates the remainder of the sequence calling {@link #matches(char)} for each * character. * * @param sequence the character sequence to replace matching characters in * @param replacement the character to append to the result string in place of each matching * character in {@code sequence} * @return the new string */ @CheckReturnValue public String replaceFrom(CharSequence sequence, char replacement) { String string = sequence.toString(); int pos = indexIn(string); if (pos == -1) { return string; } char[] chars = string.toCharArray(); chars[pos] = replacement; for (int i = pos + 1; i < chars.length; i++) { if (matches(chars[i])) { chars[i] = replacement; } } return new String(chars); } /** * Returns a string copy of the input character sequence, with each character that matches this * matcher replaced by a given replacement sequence. For example: <pre> {@code * * CharMatcher.is('a').replaceFrom("yaha", "oo")}</pre> * * ... returns {@code "yoohoo"}. * * <p><b>Note:</b> If the replacement is a fixed string with only one character, you are better * off calling {@link #replaceFrom(CharSequence, char)} directly. * * @param sequence the character sequence to replace matching characters in * @param replacement the characters to append to the result string in place of each matching * character in {@code sequence} * @return the new string */ @CheckReturnValue public String replaceFrom(CharSequence sequence, CharSequence replacement) { int replacementLen = replacement.length(); if (replacementLen == 0) { return removeFrom(sequence); } if (replacementLen == 1) { return replaceFrom(sequence, replacement.charAt(0)); } String string = sequence.toString(); int pos = indexIn(string); if (pos == -1) { return string; } int len = string.length(); StringBuilder buf = new StringBuilder((len * 3 / 2) + 16); int oldpos = 0; do { buf.append(string, oldpos, pos); buf.append(replacement); oldpos = pos + 1; pos = indexIn(string, oldpos); } while (pos != -1); buf.append(string, oldpos, len); return buf.toString(); } /** * Returns a substring of the input character sequence that omits all characters this matcher * matches from the beginning and from the end of the string. For example: <pre> {@code * * CharMatcher.anyOf("ab").trimFrom("abacatbab")}</pre> * * ... returns {@code "cat"}. * * <p>Note that: <pre> {@code * * CharMatcher.inRange('\0', ' ').trimFrom(str)}</pre> * * ... is equivalent to {@link String#trim()}. */ @CheckReturnValue public String trimFrom(CharSequence sequence) { int len = sequence.length(); int first; int last; for (first = 0; first < len; first++) { if (!matches(sequence.charAt(first))) { break; } } for (last = len - 1; last > first; last--) { if (!matches(sequence.charAt(last))) { break; } } return sequence.subSequence(first, last + 1).toString(); } /** * Returns a substring of the input character sequence that omits all characters this matcher * matches from the beginning of the string. For example: <pre> {@code * * CharMatcher.anyOf("ab").trimLeadingFrom("abacatbab")}</pre> * * ... returns {@code "catbab"}. */ @CheckReturnValue public String trimLeadingFrom(CharSequence sequence) { int len = sequence.length(); int first; for (first = 0; first < len; first++) { if (!matches(sequence.charAt(first))) { break; } } return sequence.subSequence(first, len).toString(); } /** * Returns a substring of the input character sequence that omits all characters this matcher * matches from the end of the string. For example: <pre> {@code * * CharMatcher.anyOf("ab").trimTrailingFrom("abacatbab")}</pre> * * ... returns {@code "abacat"}. */ @CheckReturnValue public String trimTrailingFrom(CharSequence sequence) { int len = sequence.length(); int last; for (last = len - 1; last >= 0; last--) { if (!matches(sequence.charAt(last))) { break; } } return sequence.subSequence(0, last + 1).toString(); } /** * Returns a string copy of the input character sequence, with each group of consecutive * characters that match this matcher replaced by a single replacement character. For example: * <pre> {@code * * CharMatcher.anyOf("eko").collapseFrom("bookkeeper", '-')}</pre> * * ... returns {@code "b-p-r"}. * * <p>The default implementation uses {@link #indexIn(CharSequence)} to find the first matching * character, then iterates the remainder of the sequence calling {@link #matches(char)} for each * character. * * @param sequence the character sequence to replace matching groups of characters in * @param replacement the character to append to the result string in place of each group of * matching characters in {@code sequence} * @return the new string */ @CheckReturnValue public String collapseFrom(CharSequence sequence, char replacement) { int first = indexIn(sequence); if (first == -1) { return sequence.toString(); } // TODO(kevinb): see if this implementation can be made faster StringBuilder builder = new StringBuilder(sequence.length()) .append(sequence.subSequence(0, first)) .append(replacement); boolean in = true; for (int i = first + 1; i < sequence.length(); i++) { char c = sequence.charAt(i); if (matches(c)) { if (!in) { builder.append(replacement); in = true; } } else { builder.append(c); in = false; } } return builder.toString(); } /** * Collapses groups of matching characters exactly as {@link #collapseFrom} does, except that * groups of matching characters at the start or end of the sequence are removed without * replacement. */ @CheckReturnValue public String trimAndCollapseFrom(CharSequence sequence, char replacement) { int first = negate().indexIn(sequence); if (first == -1) { return ""; // everything matches. nothing's left. } StringBuilder builder = new StringBuilder(sequence.length()); boolean inMatchingGroup = false; for (int i = first; i < sequence.length(); i++) { char c = sequence.charAt(i); if (matches(c)) { inMatchingGroup = true; } else { if (inMatchingGroup) { builder.append(replacement); inMatchingGroup = false; } builder.append(c); } } return builder.toString(); } // Predicate interface /** * Returns {@code true} if this matcher matches the given character. * * @throws NullPointerException if {@code character} is null */ @Override public boolean apply(Character character) { return matches(character); } /** * Returns a string representation of this {@code CharMatcher}, such as * {@code CharMatcher.or(WHITESPACE, JAVA_DIGIT)}. */ @Override public String toString() { return description; } /** * Determines whether a character is whitespace according to the latest Unicode standard, as * illustrated * <a href="http://unicode.org/cldr/utility/list-unicodeset.jsp?a=%5Cp%7Bwhitespace%7D">here</a>. * This is not the same definition used by other Java APIs. (See a * <a href="http://spreadsheets.google.com/pub?key=pd8dAQyHbdewRsnE5x5GzKQ">comparison of several * definitions of "whitespace"</a>.) * * <p><b>Note:</b> as the Unicode definition evolves, we will modify this constant to keep it up * to date. */ public static final CharMatcher WHITESPACE = new FastMatcher("CharMatcher.WHITESPACE") { /** * A special-case CharMatcher for Unicode whitespace characters that is extremely * efficient both in space required and in time to check for matches. * * Implementation details. * It turns out that all current (early 2012) Unicode characters are unique modulo 79: * so we can construct a lookup table of exactly 79 entries, and just check the character code * mod 79, and see if that character is in the table. * * There is a 1 at the beginning of the table so that the null character is not listed * as whitespace. * * Other things we tried that did not prove to be beneficial, mostly due to speed concerns: * * * Binary search into the sorted list of characters, i.e., what * CharMatcher.anyOf() does</li> * * Perfect hash function into a table of size 26 (using an offset table and a special * Jenkins hash function)</li> * * Perfect-ish hash function that required two lookups into a single table of size 26.</li> * * Using a power-of-2 sized hash table (size 64) with linear probing.</li> * * --Christopher Swenson, February 2012. */ // Mod-79 lookup table. private final char[] table = {1, 0, 160, 0, 0, 0, 0, 0, 0, 9, 10, 11, 12, 13, 0, 0, 8232, 8233, 0, 0, 0, 0, 0, 8239, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12288, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 133, 8192, 8193, 8194, 8195, 8196, 8197, 8198, 8199, 8200, 8201, 8202, 0, 0, 0, 0, 0, 8287, 5760, 0, 0, 6158, 0, 0, 0}; @Override public boolean matches(char c) { return table[c % 79] == c; } }; }