/* * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER. * * Copyright (c) 1997-2011 Oracle and/or its affiliates. All rights reserved. * * The contents of this file are subject to the terms of either the GNU * General Public License Version 2 only ("GPL") or the Common Development * and Distribution License("CDDL") (collectively, the "License"). You * may not use this file except in compliance with the License. You can * obtain a copy of the License at * https://glassfish.dev.java.net/public/CDDL+GPL_1_1.html * or packager/legal/LICENSE.txt. See the License for the specific * language governing permissions and limitations under the License. * * When distributing the software, include this License Header Notice in each * file and include the License file at packager/legal/LICENSE.txt. * * GPL Classpath Exception: * Oracle designates this particular file as subject to the "Classpath" * exception as provided by Oracle in the GPL Version 2 section of the License * file that accompanied this code. * * Modifications: * If applicable, add the following below the License Header, with the fields * enclosed by brackets [] replaced by your own identifying information: * "Portions Copyright [year] [name of copyright owner]" * * Contributor(s): * If you wish your version of this file to be governed by only the CDDL or * only the GPL Version 2, indicate your decision by adding "[Contributor] * elects to include this software in this distribution under the [CDDL or GPL * Version 2] license." If you don't indicate a single choice of license, a * recipient has the option to distribute your version of this file under * either the CDDL, the GPL Version 2 or to extend the choice of license to * its licensees as provided above. However, if you add GPL Version 2 code * and therefore, elected the GPL Version 2 license, then the option applies * only if the new code is made subject to such option by the copyright * holder. */ package com.sun.gjc.spi.base; import com.sun.gjc.common.DataSourceObjectBuilder; import com.sun.gjc.util.ResultSetClosedEventListener; import java.io.InputStream; import java.io.Reader; import java.math.BigDecimal; import java.net.URL; import java.sql.*; import java.util.Calendar; import java.util.logging.Level; /** * Abstract class for wrapping PreparedStatement<br> */ public abstract class PreparedStatementWrapper extends StatementWrapper implements PreparedStatement, ResultSetClosedEventListener { protected PreparedStatement preparedStatement = null; private boolean busy = false; private boolean cached = false; private int defaultMaxFieldSize; private int defaultMaxRows; private int defaultQueryTimeout; private int defaultFetchDirection; private int defaultFetchSize; private int currentMaxFieldSize; private int currentMaxRows; private int currentQueryTimeout; private int currentFetchDirection; private int currentFetchSize; private boolean valid = true; /** * Abstract class for wrapping PreparedStatement <br> * * @param con Connection Wrapper <br> * @param statement PreparedStatement that is to be wrapped.<br> * @param cachingEnabled boolean that enabled/ disables caching <br> * @throws SQLException Exception thrown from underlying statement<br> */ public PreparedStatementWrapper(Connection con, PreparedStatement statement, boolean cachingEnabled) throws SQLException { super(con, statement); preparedStatement = statement; cached = cachingEnabled; ConnectionHolder wrappedCon = (ConnectionHolder) con; leakDetector = wrappedCon.getManagedConnection().getLeakDetector(); if (cached) { defaultQueryTimeout = preparedStatement.getQueryTimeout(); defaultMaxFieldSize = preparedStatement.getMaxFieldSize(); defaultFetchSize = preparedStatement.getFetchSize(); defaultMaxRows = preparedStatement.getMaxRows(); defaultFetchDirection = preparedStatement.getFetchDirection(); currentQueryTimeout = defaultQueryTimeout; currentMaxFieldSize = defaultMaxFieldSize; currentFetchSize = defaultFetchSize; currentMaxRows = defaultMaxRows; currentFetchDirection = defaultFetchDirection; } else { //Start Statement leak detection if(leakDetector != null) { leakDetector.startStatementLeakTracing(preparedStatement, this); } } } /** * Executes the SQL statement in this <code>PreparedStatement</code> object, * which must be an SQL <code>INSERT</code>, <code>UPDATE</code> or * <code>DELETE</code> statement; or an SQL statement that returns nothing, * such as a DDL statement. * * @return either (1) the row count for <code>INSERT</code>, <code>UPDATE</code>, * or <code>DELETE</code> statements * or (2) 0 for SQL statements that return nothing * @throws java.sql.SQLException if a database access error occurs or the SQL * statement returns a <code>ResultSet</code> object */ public int executeUpdate() throws SQLException { return preparedStatement.executeUpdate(); } /** * Sets the designated parameter to SQL <code>NULL</code>. * <p/> * <P><B>Note:</B> You must specify the parameter's SQL type. * * @param parameterIndex the first parameter is 1, the second is 2, ... * @param sqlType the SQL type code defined in <code>java.sql.Types</code> * @throws java.sql.SQLException if a database access error occurs */ public void setNull(int parameterIndex, int sqlType) throws SQLException { preparedStatement.setNull(parameterIndex, sqlType); } /** * Sets the designated parameter to the given Java <code>boolean</code> value. * The driver converts this * to an SQL <code>BIT</code> value when it sends it to the database. * * @param parameterIndex the first parameter is 1, the second is 2, ... * @param x the parameter value * @throws java.sql.SQLException if a database access error occurs */ public void setBoolean(int parameterIndex, boolean x) throws SQLException { preparedStatement.setBoolean(parameterIndex, x); } /** * Sets the designated parameter to the given Java <code>byte</code> value. * The driver converts this * to an SQL <code>TINYINT</code> value when it sends it to the database. * * @param parameterIndex the first parameter is 1, the second is 2, ... * @param x the parameter value * @throws java.sql.SQLException if a database access error occurs */ public void setByte(int parameterIndex, byte x) throws SQLException { preparedStatement.setByte(parameterIndex, x); } /** * Sets the designated parameter to the given Java <code>short</code> value. * The driver converts this * to an SQL <code>SMALLINT</code> value when it sends it to the database. * * @param parameterIndex the first parameter is 1, the second is 2, ... * @param x the parameter value * @throws java.sql.SQLException if a database access error occurs */ public void setShort(int parameterIndex, short x) throws SQLException { preparedStatement.setShort(parameterIndex, x); } /** * Sets the designated parameter to the given Java <code>int</code> value. * The driver converts this * to an SQL <code>INTEGER</code> value when it sends it to the database. * * @param parameterIndex the first parameter is 1, the second is 2, ... * @param x the parameter value * @throws java.sql.SQLException if a database access error occurs */ public void setInt(int parameterIndex, int x) throws SQLException { preparedStatement.setInt(parameterIndex, x); } /** * Sets the designated parameter to the given Java <code>long</code> value. * The driver converts this * to an SQL <code>BIGINT</code> value when it sends it to the database. * * @param parameterIndex the first parameter is 1, the second is 2, ... * @param x the parameter value * @throws java.sql.SQLException if a database access error occurs */ public void setLong(int parameterIndex, long x) throws SQLException { preparedStatement.setLong(parameterIndex, x); } /** * Sets the designated parameter to the given Java <code>float</code> value. * The driver converts this * to an SQL <code>FLOAT</code> value when it sends it to the database. * * @param parameterIndex the first parameter is 1, the second is 2, ... * @param x the parameter value * @throws java.sql.SQLException if a database access error occurs */ public void setFloat(int parameterIndex, float x) throws SQLException { preparedStatement.setFloat(parameterIndex, x); } /** * Sets the designated parameter to the given Java <code>double</code> value. * The driver converts this * to an SQL <code>DOUBLE</code> value when it sends it to the database. * * @param parameterIndex the first parameter is 1, the second is 2, ... * @param x the parameter value * @throws java.sql.SQLException if a database access error occurs */ public void setDouble(int parameterIndex, double x) throws SQLException { preparedStatement.setDouble(parameterIndex, x); } /** * Sets the designated parameter to the given <code>java.math.BigDecimal</code> value. * The driver converts this to an SQL <code>NUMERIC</code> value when * it sends it to the database. * * @param parameterIndex the first parameter is 1, the second is 2, ... * @param x the parameter value * @throws java.sql.SQLException if a database access error occurs */ public void setBigDecimal(int parameterIndex, BigDecimal x) throws SQLException { preparedStatement.setBigDecimal(parameterIndex, x); } /** * Sets the designated parameter to the given Java <code>String</code> value. * The driver converts this * to an SQL <code>VARCHAR</code> or <code>LONGVARCHAR</code> value * (depending on the argument's * size relative to the driver's limits on <code>VARCHAR</code> values) * when it sends it to the database. * * @param parameterIndex the first parameter is 1, the second is 2, ... * @param x the parameter value * @throws java.sql.SQLException if a database access error occurs */ public void setString(int parameterIndex, String x) throws SQLException { preparedStatement.setString(parameterIndex, x); } /** * Sets the designated parameter to the given Java array of bytes. The driver converts * this to an SQL <code>VARBINARY</code> or <code>LONGVARBINARY</code> * (depending on the argument's size relative to the driver's limits on * <code>VARBINARY</code> values) when it sends it to the database. * * @param parameterIndex the first parameter is 1, the second is 2, ... * @param x the parameter value * @throws java.sql.SQLException if a database access error occurs */ public void setBytes(int parameterIndex, byte x[]) throws SQLException { preparedStatement.setBytes(parameterIndex, x); } /** * Sets the designated parameter to the given <code>java.sql.Date</code> value. * The driver converts this * to an SQL <code>DATE</code> value when it sends it to the database. * * @param parameterIndex the first parameter is 1, the second is 2, ... * @param x the parameter value * @throws java.sql.SQLException if a database access error occurs */ public void setDate(int parameterIndex, Date x) throws SQLException { preparedStatement.setDate(parameterIndex, x); } /** * Sets the designated parameter to the given <code>java.sql.Time</code> value. * The driver converts this * to an SQL <code>TIME</code> value when it sends it to the database. * * @param parameterIndex the first parameter is 1, the second is 2, ... * @param x the parameter value * @throws java.sql.SQLException if a database access error occurs */ public void setTime(int parameterIndex, Time x) throws SQLException { preparedStatement.setTime(parameterIndex, x); } /** * Sets the designated parameter to the given <code>java.sql.Timestamp</code> value. * The driver * converts this to an SQL <code>TIMESTAMP</code> value when it sends it to the * database. * * @param parameterIndex the first parameter is 1, the second is 2, ... * @param x the parameter value * @throws java.sql.SQLException if a database access error occurs */ public void setTimestamp(int parameterIndex, Timestamp x) throws SQLException { preparedStatement.setTimestamp(parameterIndex, x); } /** * Sets the designated parameter to the given input stream, which will have * the specified number of bytes. * When a very large ASCII value is input to a <code>LONGVARCHAR</code> * parameter, it may be more practical to send it via a * <code>java.io.InputStream</code>. Data will be read from the stream * as needed until end-of-file is reached. The JDBC driver will * do any necessary conversion from ASCII to the database char format. * <p/> * <P><B>Note:</B> This stream object can either be a standard * Java stream object or your own subclass that implements the * standard interface. * * @param parameterIndex the first parameter is 1, the second is 2, ... * @param x the Java input stream that contains the ASCII parameter value * @param length the number of bytes in the stream * @throws java.sql.SQLException if a database access error occurs */ public void setAsciiStream(int parameterIndex, InputStream x, int length) throws SQLException { preparedStatement.setAsciiStream(parameterIndex, x, length); } /** * Sets the designated parameter to the given input stream, which * will have the specified number of bytes. A Unicode character has * two bytes, with the first byte being the high byte, and the second * being the low byte. * <p/> * When a very large Unicode value is input to a <code>LONGVARCHAR</code> * parameter, it may be more practical to send it via a * <code>java.io.InputStream</code> object. The data will be read from the * stream as needed until end-of-file is reached. The JDBC driver will * do any necessary conversion from Unicode to the database char format. * <p/> * <P><B>Note:</B> This stream object can either be a standard * Java stream object or your own subclass that implements the * standard interface. * * @param parameterIndex the first parameter is 1, the second is 2, ... * @param x a <code>java.io.InputStream</code> object that contains the * Unicode parameter value as two-byte Unicode characters * @param length the number of bytes in the stream * @throws java.sql.SQLException if a database access error occurs * @deprecated */ @Deprecated public void setUnicodeStream(int parameterIndex, InputStream x, int length) throws SQLException { preparedStatement.setUnicodeStream(parameterIndex, x, length); } /** * Sets the designated parameter to the given input stream, which will have * the specified number of bytes. * When a very large binary value is input to a <code>LONGVARBINARY</code> * parameter, it may be more practical to send it via a * <code>java.io.InputStream</code> object. The data will be read from the * stream as needed until end-of-file is reached. * <p/> * <P><B>Note:</B> This stream object can either be a standard * Java stream object or your own subclass that implements the * standard interface. * * @param parameterIndex the first parameter is 1, the second is 2, ... * @param x the java input stream which contains the binary parameter value * @param length the number of bytes in the stream * @throws java.sql.SQLException if a database access error occurs */ public void setBinaryStream(int parameterIndex, InputStream x, int length) throws SQLException { preparedStatement.setBinaryStream(parameterIndex, x, length); } /** * Clears the current parameter values immediately. * <P>In general, parameter values remain in force for repeated use of a * statement. Setting a parameter value automatically clears its * previous value. However, in some cases it is useful to immediately * release the resources used by the current parameter values; this can * be done by calling the method <code>clearParameters</code>. * * @throws java.sql.SQLException if a database access error occurs */ public void clearParameters() throws SQLException { preparedStatement.clearParameters(); } /** * <p>Sets the value of the designated parameter with the given object. The second * argument must be an object type; for integral values, the * <code>java.lang</code> equivalent objects should be used. * <p/> * <p>The given Java object will be converted to the given targetSqlType * before being sent to the database. * <p/> * If the object has a custom mapping (is of a class implementing the * interface <code>SQLData</code>), * the JDBC driver should call the method <code>SQLData.writeSQL</code> to * write it to the SQL data stream. * If, on the other hand, the object is of a class implementing * <code>Ref</code>, <code>Blob</code>, <code>Clob</code>, <code>Struct</code>, * or <code>Array</code>, the driver should pass it to the database as a * value of the corresponding SQL type. * <p/> * <p>Note that this method may be used to pass database-specific * abstract data types. * * @param parameterIndex the first parameter is 1, the second is 2, ... * @param x the object containing the input parameter value * @param targetSqlType the SQL type (as defined in java.sql.Types) to be * sent to the database. The scale argument may further qualify this type. * @param scale for java.sql.Types.DECIMAL or java.sql.Types.NUMERIC types, * this is the number of digits after the decimal point. For all other * types, this value will be ignored. * @throws java.sql.SQLException if a database access error occurs * @see java.sql.Types */ public void setObject(int parameterIndex, Object x, int targetSqlType, int scale) throws SQLException { preparedStatement.setObject(parameterIndex, x, targetSqlType, scale); } /** * Sets the value of the designated parameter with the given object. * This method is like the method <code>setObject</code> * above, except that it assumes a scale of zero. * * @param parameterIndex the first parameter is 1, the second is 2, ... * @param x the object containing the input parameter value * @param targetSqlType the SQL type (as defined in java.sql.Types) to be * sent to the database * @throws java.sql.SQLException if a database access error occurs */ public void setObject(int parameterIndex, Object x, int targetSqlType) throws SQLException { preparedStatement.setObject(parameterIndex, x, targetSqlType); } /** * <p>Sets the value of the designated parameter using the given object. * The second parameter must be of type <code>Object</code>; therefore, the * <code>java.lang</code> equivalent objects should be used for built-in types. * <p/> * <p>The JDBC specification specifies a standard mapping from * Java <code>Object</code> types to SQL types. The given argument * will be converted to the corresponding SQL type before being * sent to the database. * <p/> * <p>Note that this method may be used to pass datatabase- * specific abstract data types, by using a driver-specific Java * type. * <p/> * If the object is of a class implementing the interface <code>SQLData</code>, * the JDBC driver should call the method <code>SQLData.writeSQL</code> * to write it to the SQL data stream. * If, on the other hand, the object is of a class implementing * <code>Ref</code>, <code>Blob</code>, <code>Clob</code>, <code>Struct</code>, * or <code>Array</code>, the driver should pass it to the database as a * value of the corresponding SQL type. * <p/> * This method throws an exception if there is an ambiguity, for example, if the * object is of a class implementing more than one of the interfaces named above. * * @param parameterIndex the first parameter is 1, the second is 2, ... * @param x the object containing the input parameter value * @throws java.sql.SQLException if a database access error occurs or the type * of the given object is ambiguous */ public void setObject(int parameterIndex, Object x) throws SQLException { preparedStatement.setObject(parameterIndex, x); } /** * Executes the SQL statement in this <code>PreparedStatement</code> object, * which may be any kind of SQL statement. * Some prepared statements return multiple results; the <code>execute</code> * method handles these complex statements as well as the simpler * form of statements handled by the methods <code>executeQuery</code> * and <code>executeUpdate</code>. * <p/> * The <code>execute</code> method returns a <code>boolean</code> to * indicate the form of the first result. You must call either the method * <code>getResultSet</code> or <code>getUpdateCount</code> * to retrieve the result; you must call <code>getMoreResults</code> to * move to any subsequent result(s). * * @return <code>true</code> if the first result is a <code>ResultSet</code> * object; <code>false</code> if the first result is an update * count or there is no result * @throws java.sql.SQLException if a database access error occurs or an argument * is supplied to this method * @see java.sql.Statement#execute * @see java.sql.Statement#getResultSet * @see java.sql.Statement#getUpdateCount * @see java.sql.Statement#getMoreResults */ public boolean execute() throws SQLException { return preparedStatement.execute(); } /** * Adds a set of parameters to this <code>PreparedStatement</code> * object's batch of commands. * * @throws java.sql.SQLException if a database access error occurs * @see java.sql.Statement#addBatch * @since 1.2 */ public void addBatch() throws SQLException { preparedStatement.addBatch(); } /** * Sets the designated parameter to the given <code>Reader</code> * object, which is the given number of characters long. * When a very large UNICODE value is input to a <code>LONGVARCHAR</code> * parameter, it may be more practical to send it via a * <code>java.io.Reader</code> object. The data will be read from the stream * as needed until end-of-file is reached. The JDBC driver will * do any necessary conversion from UNICODE to the database char format. * <p/> * <P><B>Note:</B> This stream object can either be a standard * Java stream object or your own subclass that implements the * standard interface. * * @param parameterIndex the first parameter is 1, the second is 2, ... * @param reader the <code>java.io.Reader</code> object that contains the * Unicode data * @param length the number of characters in the stream * @throws java.sql.SQLException if a database access error occurs * @since 1.2 */ public void setCharacterStream(int parameterIndex, Reader reader, int length) throws SQLException { preparedStatement.setCharacterStream(parameterIndex, reader, length); } /** * Sets the designated parameter to the given * <code>REF(<structured-type>)</code> value. * The driver converts this to an SQL <code>REF</code> value when it * sends it to the database. * * @param i the first parameter is 1, the second is 2, ... * @param x an SQL <code>REF</code> value * @throws java.sql.SQLException if a database access error occurs * @since 1.2 */ public void setRef(int i, Ref x) throws SQLException { preparedStatement.setRef(i, x); } /** * Sets the designated parameter to the given <code>Blob</code> object. * The driver converts this to an SQL <code>BLOB</code> value when it * sends it to the database. * * @param i the first parameter is 1, the second is 2, ... * @param x a <code>Blob</code> object that maps an SQL <code>BLOB</code> value * @throws java.sql.SQLException if a database access error occurs * @since 1.2 */ public void setBlob(int i, Blob x) throws SQLException { preparedStatement.setBlob(i, x); } /** * Sets the designated parameter to the given <code>Clob</code> object. * The driver converts this to an SQL <code>CLOB</code> value when it * sends it to the database. * * @param i the first parameter is 1, the second is 2, ... * @param x a <code>Clob</code> object that maps an SQL <code>CLOB</code> value * @throws java.sql.SQLException if a database access error occurs * @since 1.2 */ public void setClob(int i, Clob x) throws SQLException { preparedStatement.setClob(i, x); } /** * Sets the designated parameter to the given <code>Array</code> object. * The driver converts this to an SQL <code>ARRAY</code> value when it * sends it to the database. * * @param i the first parameter is 1, the second is 2, ... * @param x an <code>Array</code> object that maps an SQL <code>ARRAY</code> value * @throws java.sql.SQLException if a database access error occurs * @since 1.2 */ public void setArray(int i, Array x) throws SQLException { preparedStatement.setArray(i, x); } /** * Retrieves a <code>ResultSetMetaData</code> object that contains * information about the columns of the <code>ResultSet</code> object * that will be returned when this <code>PreparedStatement</code> object * is executed. * <p/> * Because a <code>PreparedStatement</code> object is precompiled, it is * possible to know about the <code>ResultSet</code> object that it will * return without having to execute it. Consequently, it is possible * to invoke the method <code>getMetaData</code> on a * <code>PreparedStatement</code> object rather than waiting to execute * it and then invoking the <code>ResultSet.getMetaData</code> method * on the <code>ResultSet</code> object that is returned. * <p/> * <B>NOTE:</B> Using this method may be expensive for some drivers due * to the lack of underlying DBMS support. * * @return the description of a <code>ResultSet</code> object's columns or * <code>null</code> if the driver cannot return a * <code>ResultSetMetaData</code> object * @throws java.sql.SQLException if a database access error occurs * @since 1.2 */ public ResultSetMetaData getMetaData() throws SQLException { return preparedStatement.getMetaData(); } /** * Sets the designated parameter to the given <code>java.sql.Date</code> value, * using the given <code>Calendar</code> object. The driver uses * the <code>Calendar</code> object to construct an SQL <code>DATE</code> value, * which the driver then sends to the database. With * a <code>Calendar</code> object, the driver can calculate the date * taking into account a custom timezone. If no * <code>Calendar</code> object is specified, the driver uses the default * timezone, which is that of the virtual machine running the application. * * @param parameterIndex the first parameter is 1, the second is 2, ... * @param x the parameter value * @param cal the <code>Calendar</code> object the driver will use * to construct the date * @throws java.sql.SQLException if a database access error occurs * @since 1.2 */ public void setDate(int parameterIndex, Date x, Calendar cal) throws SQLException { preparedStatement.setDate(parameterIndex, x, cal); } /** * Sets the designated parameter to the given <code>java.sql.Time</code> value, * using the given <code>Calendar</code> object. The driver uses * the <code>Calendar</code> object to construct an SQL <code>TIME</code> value, * which the driver then sends to the database. With * a <code>Calendar</code> object, the driver can calculate the time * taking into account a custom timezone. If no * <code>Calendar</code> object is specified, the driver uses the default * timezone, which is that of the virtual machine running the application. * * @param parameterIndex the first parameter is 1, the second is 2, ... * @param x the parameter value * @param cal the <code>Calendar</code> object the driver will use * to construct the time * @throws java.sql.SQLException if a database access error occurs * @since 1.2 */ public void setTime(int parameterIndex, Time x, Calendar cal) throws SQLException { preparedStatement.setTime(parameterIndex, x, cal); } /** * Sets the designated parameter to the given <code>java.sql.Timestamp</code> value, * using the given <code>Calendar</code> object. The driver uses * the <code>Calendar</code> object to construct an SQL <code>TIMESTAMP</code> value, * which the driver then sends to the database. With a * <code>Calendar</code> object, the driver can calculate the timestamp * taking into account a custom timezone. If no * <code>Calendar</code> object is specified, the driver uses the default * timezone, which is that of the virtual machine running the application. * * @param parameterIndex the first parameter is 1, the second is 2, ... * @param x the parameter value * @param cal the <code>Calendar</code> object the driver will use * to construct the timestamp * @throws java.sql.SQLException if a database access error occurs * @since 1.2 */ public void setTimestamp(int parameterIndex, Timestamp x, Calendar cal) throws SQLException { preparedStatement.setTimestamp(parameterIndex, x, cal); } /** * Sets the designated parameter to SQL <code>NULL</code>. * This version of the method <code>setNull</code> should * be used for user-defined types and REF type parameters. Examples * of user-defined types include: STRUCT, DISTINCT, JAVA_OBJECT, and * named array types. * <p/> * <P><B>Note:</B> To be portable, applications must give the * SQL type code and the fully-qualified SQL type name when specifying * a NULL user-defined or REF parameter. In the case of a user-defined type * the name is the type name of the parameter itself. For a REF * parameter, the name is the type name of the referenced type. If * a JDBC driver does not need the type code or type name information, * it may ignore it. * <p/> * Although it is intended for user-defined and Ref parameters, * this method may be used to set a null parameter of any JDBC type. * If the parameter does not have a user-defined or REF type, the given * typeName is ignored. * * @param paramIndex the first parameter is 1, the second is 2, ... * @param sqlType a value from <code>java.sql.Types</code> * @param typeName the fully-qualified name of an SQL user-defined type; * ignored if the parameter is not a user-defined type or REF * @throws java.sql.SQLException if a database access error occurs * @since 1.2 */ public void setNull(int paramIndex, int sqlType, String typeName) throws SQLException { preparedStatement.setNull(paramIndex, sqlType, typeName); } /** * Sets the designated parameter to the given <code>java.net.URL</code> value. * The driver converts this to an SQL <code>DATALINK</code> value * when it sends it to the database. * * @param parameterIndex the first parameter is 1, the second is 2, ... * @param x the <code>java.net.URL</code> object to be set * @throws java.sql.SQLException if a database access error occurs * @since 1.4 */ public void setURL(int parameterIndex, URL x) throws SQLException { preparedStatement.setURL(parameterIndex, x); } /** * Retrieves the number, types and properties of this * <code>PreparedStatement</code> object's parameters. * * @return a <code>ParameterMetaData</code> object that contains information * about the number, types and properties of this * <code>PreparedStatement</code> object's parameters * @throws java.sql.SQLException if a database access error occurs * @see java.sql.ParameterMetaData * @since 1.4 */ public ParameterMetaData getParameterMetaData() throws SQLException { return preparedStatement.getParameterMetaData(); } public boolean isBusy() { return busy; } public void setBusy(boolean busy) { this.busy = busy; if (busy) { if (leakDetector != null) { leakDetector.startStatementLeakTracing(preparedStatement, this); } } else { if (leakDetector != null) { leakDetector.stopStatementLeakTracing(preparedStatement, this); if(cached && isMarkedForReclaim()) { //When caching is on and is marked for reclaim, the statement //would still remain in cache. Hence mark it as invalid and //let the client that uses the statement, detect and purge //it if found as invalid setValid(false); } } } } public boolean getCached() { return cached; } public void close() throws SQLException { if (!cached) { //Stop leak tracing if(leakDetector != null) { leakDetector.stopStatementLeakTracing(preparedStatement, this); } preparedStatement.close(); } else { //TODO-SC what if Exception is thrown in this block, should there be a way to indicate the // con. not to use this statement any more ? clearParameters(); if (defaultQueryTimeout != currentQueryTimeout) { preparedStatement.setQueryTimeout(defaultQueryTimeout); currentQueryTimeout = defaultQueryTimeout; } if (defaultMaxFieldSize != currentMaxFieldSize) { preparedStatement.setMaxFieldSize(defaultMaxFieldSize); currentMaxFieldSize = defaultMaxFieldSize; } if (defaultFetchSize != currentFetchSize) { preparedStatement.setFetchSize(defaultFetchSize); currentFetchSize = defaultFetchSize; } if (defaultMaxRows != currentMaxRows) { preparedStatement.setMaxRows(defaultMaxRows); currentMaxRows = defaultMaxRows; } if (defaultFetchDirection != currentFetchDirection) { preparedStatement.setFetchDirection(defaultFetchDirection); currentFetchDirection = defaultFetchDirection; } setBusy(false); } } public void closeOnCompletion() throws SQLException { if (DataSourceObjectBuilder.isJDBC41()) { if(!cached) { //If statement caching is not turned on, call the driver implementation directly if (leakDetector != null) { _logger.log(Level.INFO, "jdbc.invalid_operation.close_on_completion"); throw new UnsupportedOperationException("Not supported yet."); } actualCloseOnCompletion(); } else { super.closeOnCompletion(); } } } public boolean isCloseOnCompletion() throws SQLException { if (DataSourceObjectBuilder.isJDBC41()) { if(cached) { return getCloseOnCompletion(); } } return super.isCloseOnCompletion(); } public void setMaxFieldSize(int max) throws SQLException { preparedStatement.setMaxFieldSize(max); if (cached) currentMaxFieldSize = max; } public void setMaxRows(int max) throws SQLException { preparedStatement.setMaxRows(max); if (cached) currentMaxRows = max; } public void setQueryTimeout(int seconds) throws SQLException { preparedStatement.setQueryTimeout(seconds); if (cached) currentQueryTimeout = seconds; } public void setFetchDirection(int direction) throws SQLException { preparedStatement.setFetchDirection(direction); if (cached) currentFetchDirection = direction; } public void setFetchSize(int rows) throws SQLException { preparedStatement.setFetchSize(rows); if (cached) currentFetchSize = rows; } public void setCached(boolean cached){ this.cached = cached; } public boolean isValid() { return valid; } public void setValid(boolean valid) { this.valid = valid; } public void incrementResultSetReferenceCount() { //Update resultSetCount to be used in case of jdbc41 closeOnCompletion if (DataSourceObjectBuilder.isJDBC41() && getCached()) { incrementResultSetCount(); } } public void resultSetClosed() throws SQLException { if (DataSourceObjectBuilder.isJDBC41() && getCached()) { decrementResultSetCount(); if (getCloseOnCompletion() && getResultSetCount() == 0) { ConnectionHolder wrappedCon = (ConnectionHolder) getConnection(); wrappedCon.getManagedConnection().purgeStatementFromCache(this); } } } }