/** * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.math.integration; import org.apache.commons.lang.Validate; import org.apache.commons.math.util.MathUtils; import com.opengamma.analytics.math.function.DoubleFunction1D; import com.opengamma.analytics.math.function.Function1D; import com.opengamma.analytics.math.function.special.GammaFunction; import com.opengamma.analytics.math.function.special.LaguerrePolynomialFunction; import com.opengamma.analytics.math.rootfinding.NewtonRaphsonSingleRootFinder; import com.opengamma.util.tuple.Pair; /** * Class that generates weights and abscissas for Gauss-Laguerre quadrature. * The weights $w_i$ are given by: * $$ * \begin{align*} * w_i = -\frac{\Gamma(\alpha + n)}{n!L_i'(x_i)L_{i-1}(x_i)} * \end{align*} * $$ * where $x_i$ is the $i^{th}$ root of the orthogonal polynomial, $L_i$ is the * $i^{th}$ polynomial and $L_i'$ is the first derivative of the $i^{th}$ * polynomial. The orthogonal polynomial is generated by * {@link com.opengamma.analytics.math.function.special.LaguerrePolynomialFunction}. */ public class GaussLaguerreWeightAndAbscissaFunction implements QuadratureWeightAndAbscissaFunction { private static final LaguerrePolynomialFunction LAGUERRE = new LaguerrePolynomialFunction(); private static final NewtonRaphsonSingleRootFinder ROOT_FINDER = new NewtonRaphsonSingleRootFinder(1e-10); private static final Function1D<Double, Double> GAMMA_FUNCTION = new GammaFunction(); private final double _alpha; /** * Sets $\alpha = 0$ */ public GaussLaguerreWeightAndAbscissaFunction() { this(0); } /** * @param alpha The value of $\alpha$ to use when generating the polynomials. */ public GaussLaguerreWeightAndAbscissaFunction(final double alpha) { _alpha = alpha; } /** * {@inheritDoc} */ @Override public GaussianQuadratureData generate(final int n) { Validate.isTrue(n > 0); final Pair<DoubleFunction1D, DoubleFunction1D>[] polynomials = LAGUERRE.getPolynomialsAndFirstDerivative(n, _alpha); final Pair<DoubleFunction1D, DoubleFunction1D> pair = polynomials[n]; final DoubleFunction1D p1 = polynomials[n - 1].getFirst(); final DoubleFunction1D function = pair.getFirst(); final DoubleFunction1D derivative = pair.getSecond(); final double[] x = new double[n]; final double[] w = new double[n]; double root = 0; for (int i = 0; i < n; i++) { root = ROOT_FINDER.getRoot(function, derivative, getInitialRootGuess(root, i, n, x)); x[i] = root; w[i] = -GAMMA_FUNCTION.evaluate(_alpha + n) / MathUtils.factorialDouble(n) / (derivative.evaluate(root) * p1.evaluate(root)); } return new GaussianQuadratureData(x, w); } private double getInitialRootGuess(final double previousRoot, final int i, final int n, final double[] x) { if (i == 0) { return (1 + _alpha) * (3 + 0.92 * _alpha) / (1 + 1.8 * _alpha + 2.4 * n); } if (i == 1) { return previousRoot + (15 + 6.25 * _alpha) / (1 + 0.9 * _alpha + 2.5 * n); } final int j = i - 1; return previousRoot + ((1 + 2.55 * j) / 1.9 / j + 1.26 * j * _alpha / (1 + 3.5 * j)) * (previousRoot - x[i - 2]) / (1 + 0.3 * _alpha); } }