/** * Copyright (C) 2012 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.financial.interestrate.future.provider; import com.opengamma.analytics.financial.interestrate.future.derivative.InterestRateFutureOptionMarginSecurity; import com.opengamma.analytics.financial.model.option.pricing.analytic.formula.EuropeanVanillaOption; import com.opengamma.analytics.financial.model.option.pricing.analytic.formula.NormalFunctionData; import com.opengamma.analytics.financial.model.option.pricing.analytic.formula.NormalPriceFunction; import com.opengamma.analytics.financial.provider.description.interestrate.MulticurveProviderInterface; import com.opengamma.analytics.financial.provider.description.interestrate.NormalSTIRFuturesProviderInterface; import com.opengamma.analytics.financial.provider.sensitivity.multicurve.MulticurveSensitivity; import com.opengamma.analytics.util.amount.SurfaceValue; import com.opengamma.util.ArgumentChecker; import com.opengamma.util.tuple.DoublesPair; /** * Method for the pricing of interest rate future options with daily margining. The pricing is done with a Normal approach on the future price. * The normal parameters are represented by (expiration-delay-strike-futures price) surfaces. The "delay" is the time between option expiration and future last trading date, * i.e. 0 for quarterly options and x for x-year mid-curve options. The future prices are computed without convexity adjustments. */ public final class InterestRateFutureOptionMarginSecurityNormalSmileMethod extends InterestRateFutureOptionMarginSecurityGenericMethod<NormalSTIRFuturesProviderInterface> { /** * Creates the method unique instance. */ private static final InterestRateFutureOptionMarginSecurityNormalSmileMethod INSTANCE = new InterestRateFutureOptionMarginSecurityNormalSmileMethod(); /** * Constructor. */ private InterestRateFutureOptionMarginSecurityNormalSmileMethod() { } /** * Return the method unique instance. * @return The instance. */ public static InterestRateFutureOptionMarginSecurityNormalSmileMethod getInstance() { return INSTANCE; } /** * The Black function used in the pricing. */ private static final NormalPriceFunction NORMAL_FUNCTION = new NormalPriceFunction(); /** * The method used to compute the future price. It is a method without convexity adjustment. */ private static final InterestRateFutureSecurityDiscountingMethod METHOD_FUTURE = InterestRateFutureSecurityDiscountingMethod.getInstance(); /** * Computes the option security price from future price. * @param security The future option security. * @param normalData The normal volatility and multi-curves provider. * @param priceFuture The price of the underlying future. * @return The security price. */ public double priceFromFuturePrice(final InterestRateFutureOptionMarginSecurity security, final NormalSTIRFuturesProviderInterface normalData, final double priceFuture) { ArgumentChecker.notNull(security, "Option security"); ArgumentChecker.notNull(normalData, "Normal data"); final EuropeanVanillaOption option = new EuropeanVanillaOption(security.getStrike(), security.getExpirationTime(), security.isCall()); final double delay = security.getUnderlyingFuture().getTradingLastTime() - security.getExpirationTime(); double volatility = normalData.getVolatility(security.getExpirationTime(), delay, security.getStrike(), priceFuture); final NormalFunctionData normalPoint = new NormalFunctionData(priceFuture, 1.0, volatility); final double priceSecurity = NORMAL_FUNCTION.getPriceFunction(option).evaluate(normalPoint); return priceSecurity; } /** * Computes the option security price. The future price is computed without convexity adjustment. * @param security The future option security. * @param normalData The normal volatility and multi-curves provider. * @return The security price. */ @Override public double price(final InterestRateFutureOptionMarginSecurity security, final NormalSTIRFuturesProviderInterface normalData) { ArgumentChecker.notNull(security, "Option security"); ArgumentChecker.notNull(normalData, "Normal data"); final double priceFuture = METHOD_FUTURE.price(security.getUnderlyingFuture(), normalData.getMulticurveProvider()); return priceFromFuturePrice(security, normalData, priceFuture); } /** * Computes the option security price curve sensitivity. The future price is computed without convexity adjustment. * It is supposed that for a given strike the volatility does not change with the curves (sticky strike). * @param security The future option security. * @param normalData The normal volatility and multi-curves provider. * @return The security price curve sensitivity. */ @Override public MulticurveSensitivity priceCurveSensitivity(InterestRateFutureOptionMarginSecurity security, NormalSTIRFuturesProviderInterface normalData) { ArgumentChecker.notNull(security, "Option security"); ArgumentChecker.notNull(normalData, "Normal data"); double priceFuture = METHOD_FUTURE.price(security.getUnderlyingFuture(), normalData.getMulticurveProvider()); return priceCurveSensitivityFromFuturePrice(security, normalData, priceFuture); } /** * Computes the option security price curve sensitivity. with underlying futures price * It is supposed that for a given strike the volatility does not change with the curves (sticky strike). * @param security The future option security. * @param normalData The normal volatility and multi-curves provider. * @param priceFuture The price of the underlying future. * @return The security price curve sensitivity. */ public MulticurveSensitivity priceCurveSensitivityFromFuturePrice(InterestRateFutureOptionMarginSecurity security, NormalSTIRFuturesProviderInterface normalData, double priceFuture) { ArgumentChecker.notNull(security, "Option security"); ArgumentChecker.notNull(normalData, "Normal data"); // Forward sweep final EuropeanVanillaOption option = new EuropeanVanillaOption(security.getStrike(), security.getExpirationTime(), security.isCall()); final double delay = security.getUnderlyingFuture().getTradingLastTime() - security.getExpirationTime(); double volatility = normalData.getVolatility(security.getExpirationTime(), delay, security.getStrike(), priceFuture); final NormalFunctionData normalPoint = new NormalFunctionData(priceFuture, 1.0, volatility); // Backward sweep final double[] priceAdjoint = new double[3]; NORMAL_FUNCTION.getPriceAdjoint(option, normalPoint, priceAdjoint); final double priceBar = 1.0; final double priceFutureBar = priceAdjoint[0] * priceBar; final MulticurveSensitivity priceFutureDerivative = METHOD_FUTURE.priceCurveSensitivity(security.getUnderlyingFuture(), normalData.getMulticurveProvider()); return priceFutureDerivative.multipliedBy(priceFutureBar); } /** * Computes the option security price volatility sensitivity. The future price is computed without convexity adjustment. * @param security The future option security. * @param normalData The normal volatility and multi-curves provider. * @return The security price Black volatility sensitivity. */ public SurfaceValue priceNormalSensitivity(final InterestRateFutureOptionMarginSecurity security, final NormalSTIRFuturesProviderInterface normalData) { ArgumentChecker.notNull(security, "Option security"); ArgumentChecker.notNull(normalData, "Normal data"); // Forward sweep final double priceFuture = METHOD_FUTURE.price(security.getUnderlyingFuture(), normalData.getMulticurveProvider()); final double strike = security.getStrike(); final EuropeanVanillaOption option = new EuropeanVanillaOption(strike, security.getExpirationTime(), security.isCall()); final double delay = security.getUnderlyingFuture().getTradingLastTime() - security.getExpirationTime(); double volatility = normalData.getVolatility(security.getExpirationTime(), delay, security.getStrike(), priceFuture); final NormalFunctionData normalPoint = new NormalFunctionData(priceFuture, 1.0, volatility); // Backward sweep final double[] priceAdjoint = new double[3]; NORMAL_FUNCTION.getPriceAdjoint(option, normalPoint, priceAdjoint); final double priceBar = 1.0; final double volatilityBar = priceAdjoint[1] * priceBar; final DoublesPair expiryStrikeDelay = DoublesPair.of(security.getExpirationTime(), strike); final SurfaceValue sensi = SurfaceValue.from(expiryStrikeDelay, volatilityBar); return sensi; } /** * Interpolates and returns the option's implied volatility * The future price is computed without convexity adjustment. * @param security The future option security. * @param normalData The normal volatility and multi-curves provider. * @return Lognormal Implied Volatility. */ public double impliedVolatility(final InterestRateFutureOptionMarginSecurity security, final NormalSTIRFuturesProviderInterface normalData) { ArgumentChecker.notNull(security, "Option security"); ArgumentChecker.notNull(normalData, "Normal data"); double priceFutures = METHOD_FUTURE.price(security.getUnderlyingFuture(), normalData); final double delay = security.getUnderlyingFuture().getTradingLastTime() - security.getExpirationTime(); return normalData.getVolatility(security.getExpirationTime(), delay, security.getStrike(), priceFutures); } /** * Computes the underlying future security price. The future price is computed without convexity adjustment. * @param security The future option security. * @param multicurves The multi-curves provider. * @return The security price. */ public double underlyingFuturesPrice(final InterestRateFutureOptionMarginSecurity security, final MulticurveProviderInterface multicurves) { ArgumentChecker.notNull(security, "Option security"); return METHOD_FUTURE.price(security.getUnderlyingFuture(), multicurves); } /** * Computes the option security price delta, wrt the futures price dV/df. The futures price is computed without convexity adjustment. * It is supposed that for a given strike the volatility does not change with the curves. * @param security The future option security. * @param normalData The curve and normal volatility data. * @return The delta. */ public double priceDelta(InterestRateFutureOptionMarginSecurity security, NormalSTIRFuturesProviderInterface normalData) { ArgumentChecker.notNull(security, "Option security"); ArgumentChecker.notNull(normalData, "Normal data"); double priceFuture = METHOD_FUTURE.price(security.getUnderlyingFuture(), normalData.getMulticurveProvider()); return priceDeltaFromFuturePrice(security, normalData, priceFuture); } /** * Computes the option security price delta, wrt the futures price dV/df. * It is supposed that for a given strike the volatility does not change with the curves. * @param security The future option security. * @param normalData The curve and normal volatility data. * @param priceFuture The price of the underlying future. * @return The delta. */ public double priceDeltaFromFuturePrice(final InterestRateFutureOptionMarginSecurity security, final NormalSTIRFuturesProviderInterface normalData, final double priceFuture) { ArgumentChecker.notNull(security, "Option security"); ArgumentChecker.notNull(normalData, "Normal data"); final EuropeanVanillaOption option = new EuropeanVanillaOption(security.getStrike(), security.getExpirationTime(), security.isCall()); final double delay = security.getUnderlyingFuture().getTradingLastTime() - security.getExpirationTime(); double volatility = normalData .getVolatility(security.getExpirationTime(), delay, security.getStrike(), priceFuture); final NormalFunctionData normalPoint = new NormalFunctionData(priceFuture, 1.0, volatility); return NORMAL_FUNCTION.getDelta(option, normalPoint); } /** * Computes the option's value gamma, the second derivative of the security price wrt underlying futures rate. * The future price is computed without convexity adjustment. * @param security The future option security. * @param normalData The curve and normal volatility data. * @return The gamma. */ public double priceGamma(InterestRateFutureOptionMarginSecurity security, NormalSTIRFuturesProviderInterface normalData) { ArgumentChecker.notNull(security, "Option security"); ArgumentChecker.notNull(normalData, "Normal data"); double priceFuture = METHOD_FUTURE.price(security.getUnderlyingFuture(), normalData.getMulticurveProvider()); return priceGammaFromFuturePrice(security, normalData, priceFuture); } /** * Computes the option's value gamma, the second derivative of the security price wrt underlying futures rate. * @param security The future option security. * @param normalData The curve and normal volatility data. * @param priceFuture The price of the underlying future. * @return The gamma. */ public double priceGammaFromFuturePrice(final InterestRateFutureOptionMarginSecurity security, final NormalSTIRFuturesProviderInterface normalData, final double priceFuture) { ArgumentChecker.notNull(security, "Option security"); ArgumentChecker.notNull(normalData, "Normal data"); final EuropeanVanillaOption option = new EuropeanVanillaOption(security.getStrike(), security.getExpirationTime(), security.isCall()); final double delay = security.getUnderlyingFuture().getTradingLastTime() - security.getExpirationTime(); double volatility = normalData .getVolatility(security.getExpirationTime(), delay, security.getStrike(), priceFuture); final NormalFunctionData normalPoint = new NormalFunctionData(priceFuture, 1.0, volatility); return NORMAL_FUNCTION.getGamma(option, normalPoint); } /** * Computes the option security vega. The future price is computed without convexity adjustment. * @param security The future option security. * @param normalData The curve and normal volatility data. * @return The vega. */ public double priceVega(InterestRateFutureOptionMarginSecurity security, NormalSTIRFuturesProviderInterface normalData) { ArgumentChecker.notNull(security, "Option security"); ArgumentChecker.notNull(normalData, "Normal data"); double priceFuture = METHOD_FUTURE.price(security.getUnderlyingFuture(), normalData.getMulticurveProvider()); return priceVegaFromFuturePrice(security, normalData, priceFuture); } /** * Computes the option security vega. * @param security The future option security. * @param normalData The curve and normal volatility data. * @param priceFuture The price of the underlying future. * @return The vega. */ public double priceVegaFromFuturePrice(final InterestRateFutureOptionMarginSecurity security, final NormalSTIRFuturesProviderInterface normalData, final double priceFuture) { ArgumentChecker.notNull(security, "Option security"); ArgumentChecker.notNull(normalData, "Normal data"); final EuropeanVanillaOption option = new EuropeanVanillaOption(security.getStrike(), security.getExpirationTime(), security.isCall()); final double delay = security.getUnderlyingFuture().getTradingLastTime() - security.getExpirationTime(); double volatility = normalData .getVolatility(security.getExpirationTime(), delay, security.getStrike(), priceFuture); final NormalFunctionData normalPoint = new NormalFunctionData(priceFuture, 1.0, volatility); return NORMAL_FUNCTION.getVega(option, normalPoint); } /** * Computes the option security theta. The future price is computed without convexity adjustment. * @param security The future option security. * @param normalData The curve and normal volatility data. * @return The theta. */ public double priceTheta(InterestRateFutureOptionMarginSecurity security, NormalSTIRFuturesProviderInterface normalData) { ArgumentChecker.notNull(security, "Option security"); ArgumentChecker.notNull(normalData, "Normal data"); double priceFuture = METHOD_FUTURE.price(security.getUnderlyingFuture(), normalData.getMulticurveProvider()); return priceThetaFromFuturePrice(security, normalData, priceFuture); } /** * Computes the option security theta. * @param security The future option security. * @param normalData The curve and normal volatility data. * @param priceFuture The price of the underlying future. * @return The theta. */ public double priceThetaFromFuturePrice(final InterestRateFutureOptionMarginSecurity security, final NormalSTIRFuturesProviderInterface normalData, final double priceFuture) { ArgumentChecker.notNull(security, "Option security"); ArgumentChecker.notNull(normalData, "Normal data"); final EuropeanVanillaOption option = new EuropeanVanillaOption(security.getStrike(), security.getExpirationTime(), security.isCall()); final double delay = security.getUnderlyingFuture().getTradingLastTime() - security.getExpirationTime(); double volatility = normalData .getVolatility(security.getExpirationTime(), delay, security.getStrike(), priceFuture); final NormalFunctionData normalPoint = new NormalFunctionData(priceFuture, 1.0, volatility); return NORMAL_FUNCTION.getTheta(option, normalPoint); } }