package com.wavpack.decoder; /* ** WordsUtils.java ** ** Copyright (c) 2007 - 2008 Peter McQuillan ** ** All Rights Reserved. ** ** Distributed under the BSD Software License (see license.txt) ** */ class WordsUtils { //////////////////////////////// local macros ///////////////////////////////// static int LIMIT_ONES = 16; // maximum consecutive 1s sent for "div" data // these control the time constant "slow_level" which is used for hybrid mode // that controls bitrate as a function of residual level (HYBRID_BITRATE). static int SLS = 8; static int SLO = ((1 << (SLS - 1))); // these control the time constant of the 3 median level breakpoints static int DIV0 = 128; // 5/7 of samples static int DIV1 = 64; // 10/49 of samples static int DIV2 = 32; // 20/343 of samples ///////////////////////////// local table storage //////////////////////////// static char nbits_table[] = { 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, // 0 - 15 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, // 16 - 31 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, // 32 - 47 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, // 48 - 63 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, // 64 - 79 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, // 80 - 95 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, // 96 - 111 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, // 112 - 127 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, // 128 - 143 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, // 144 - 159 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, // 160 - 175 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, // 176 - 191 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, // 192 - 207 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, // 208 - 223 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, // 224 - 239 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8 // 240 - 255 }; static int log2_table[] = { 0x00, 0x01, 0x03, 0x04, 0x06, 0x07, 0x09, 0x0a, 0x0b, 0x0d, 0x0e, 0x10, 0x11, 0x12, 0x14, 0x15, 0x16, 0x18, 0x19, 0x1a, 0x1c, 0x1d, 0x1e, 0x20, 0x21, 0x22, 0x24, 0x25, 0x26, 0x28, 0x29, 0x2a, 0x2c, 0x2d, 0x2e, 0x2f, 0x31, 0x32, 0x33, 0x34, 0x36, 0x37, 0x38, 0x39, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 0x41, 0x42, 0x43, 0x44, 0x45, 0x47, 0x48, 0x49, 0x4a, 0x4b, 0x4d, 0x4e, 0x4f, 0x50, 0x51, 0x52, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x5c, 0x5d, 0x5e, 0x5f, 0x60, 0x61, 0x62, 0x63, 0x64, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf, 0xb0, 0xb1, 0xb2, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf, 0xc0, 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xcb, 0xcb, 0xcc, 0xcd, 0xce, 0xcf, 0xd0, 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdc, 0xdd, 0xde, 0xdf, 0xe0, 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe4, 0xe5, 0xe6, 0xe7, 0xe7, 0xe8, 0xe9, 0xea, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xee, 0xef, 0xf0, 0xf1, 0xf1, 0xf2, 0xf3, 0xf4, 0xf4, 0xf5, 0xf6, 0xf7, 0xf7, 0xf8, 0xf9, 0xf9, 0xfa, 0xfb, 0xfc, 0xfc, 0xfd, 0xfe, 0xff, 0xff }; static int exp2_table[] = { 0x00, 0x01, 0x01, 0x02, 0x03, 0x03, 0x04, 0x05, 0x06, 0x06, 0x07, 0x08, 0x08, 0x09, 0x0a, 0x0b, 0x0b, 0x0c, 0x0d, 0x0e, 0x0e, 0x0f, 0x10, 0x10, 0x11, 0x12, 0x13, 0x13, 0x14, 0x15, 0x16, 0x16, 0x17, 0x18, 0x19, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1d, 0x1e, 0x1f, 0x20, 0x20, 0x21, 0x22, 0x23, 0x24, 0x24, 0x25, 0x26, 0x27, 0x28, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 0x40, 0x41, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, 0x50, 0x51, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5e, 0x5f, 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x87, 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 0x90, 0x91, 0x92, 0x93, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9f, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xaf, 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xbc, 0xbd, 0xbe, 0xbf, 0xc0, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc8, 0xc9, 0xca, 0xcb, 0xcd, 0xce, 0xcf, 0xd0, 0xd2, 0xd3, 0xd4, 0xd6, 0xd7, 0xd8, 0xd9, 0xdb, 0xdc, 0xdd, 0xde, 0xe0, 0xe1, 0xe2, 0xe4, 0xe5, 0xe6, 0xe8, 0xe9, 0xea, 0xec, 0xed, 0xee, 0xf0, 0xf1, 0xf2, 0xf4, 0xf5, 0xf6, 0xf8, 0xf9, 0xfa, 0xfc, 0xfd, 0xff }; static char ones_count_table[] = { 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 8 }; ///////////////////////////// executable code //////////////////////////////// // Read the median log2 values from the specifed metadata structure, convert // them back to 32-bit unsigned values and store them. If length is not // exactly correct then we flag and return an error. static int read_entropy_vars(WavpackStream wps, WavpackMetadata wpmd) { byte byteptr[] = wpmd.data; //byteptr needs to be unsigned chars, so convert to int array int[] b_array = new int[12]; int i = 0; words_data w = new words_data(); for (i = 0; i < 6; i++) { b_array[i] = (int) (byteptr[i] & 0xff); } w.holding_one = 0; w.holding_zero = 0; if (wpmd.byte_length != 12) { if ((wps.wphdr.flags & (Defines.MONO_FLAG | Defines.FALSE_STEREO)) == 0) { return Defines.FALSE; } } w.c[0].median[0] = exp2s(b_array[0] + (b_array[1] << 8)); w.c[0].median[1] = exp2s(b_array[2] + (b_array[3] << 8)); w.c[0].median[2] = exp2s(b_array[4] + (b_array[5] << 8)); if ((wps.wphdr.flags & (Defines.MONO_FLAG | Defines.FALSE_STEREO)) == 0) { for (i = 6; i < 12; i++) { b_array[i] = (int) (byteptr[i] & 0xff); } w.c[1].median[0] = exp2s(b_array[6] + (b_array[7] << 8)); w.c[1].median[1] = exp2s(b_array[8] + (b_array[9] << 8)); w.c[1].median[2] = exp2s(b_array[10] + (b_array[11] << 8)); } wps.w = w; return Defines.TRUE; } // Read the hybrid related values from the specifed metadata structure, convert // them back to their internal formats and store them. The extended profile // stuff is not implemented yet, so return an error if we get more data than // we know what to do with. static int read_hybrid_profile(WavpackStream wps, WavpackMetadata wpmd) { byte byteptr[] = wpmd.data; int bytecnt = wpmd.byte_length; int buffer_counter = 0; int uns_buf = 0; int uns_buf_plusone = 0; if ((wps.wphdr.flags & Defines.HYBRID_BITRATE) != 0) { uns_buf = (int) (byteptr[buffer_counter] & 0xff); uns_buf_plusone = (int) (byteptr[buffer_counter + 1] & 0xff); wps.w.c[0].slow_level = exp2s(uns_buf + (uns_buf_plusone << 8)); buffer_counter = buffer_counter + 2; if ((wps.wphdr.flags & (Defines.MONO_FLAG | Defines.FALSE_STEREO)) == 0) { uns_buf = (int) (byteptr[buffer_counter] & 0xff); uns_buf_plusone = (int) (byteptr[buffer_counter + 1] & 0xff); wps.w.c[1].slow_level = exp2s(uns_buf + (uns_buf_plusone << 8)); buffer_counter = buffer_counter + 2; } } uns_buf = (int) (byteptr[buffer_counter] & 0xff); uns_buf_plusone = (int) (byteptr[buffer_counter + 1] & 0xff); wps.w.bitrate_acc[0] = (int) (uns_buf + (uns_buf_plusone << 8)) << 16; buffer_counter = buffer_counter + 2; if ((wps.wphdr.flags & (Defines.MONO_FLAG | Defines.FALSE_STEREO)) == 0) { uns_buf = (int) (byteptr[buffer_counter] & 0xff); uns_buf_plusone = (int) (byteptr[buffer_counter + 1] & 0xff); wps.w.bitrate_acc[1] = (int) (uns_buf + (uns_buf_plusone << 8)) << 16; buffer_counter = buffer_counter + 2; } if (buffer_counter < bytecnt) { uns_buf = (int) (byteptr[buffer_counter] & 0xff); uns_buf_plusone = (int) (byteptr[buffer_counter + 1] & 0xff); wps.w.bitrate_delta[0] = exp2s((short) (uns_buf + (uns_buf_plusone << 8))); buffer_counter = buffer_counter + 2; if ((wps.wphdr.flags & (Defines.MONO_FLAG | Defines.FALSE_STEREO)) == 0) { uns_buf = (int) (byteptr[buffer_counter] & 0xff); uns_buf_plusone = (int) (byteptr[buffer_counter + 1] & 0xff); wps.w.bitrate_delta[1] = exp2s((short) (uns_buf + (uns_buf_plusone << 8))); buffer_counter = buffer_counter + 2; } if (buffer_counter < bytecnt) return Defines.FALSE; } else wps.w.bitrate_delta[0] = wps.w.bitrate_delta[1] = 0; return Defines.TRUE; } // This function is called during both encoding and decoding of hybrid data to // update the "error_limit" variable which determines the maximum sample error // allowed in the main bitstream. In the HYBRID_BITRATE mode (which is the only // currently implemented) this is calculated from the slow_level values and the // bitrate accumulators. Note that the bitrate accumulators can be changing. static words_data update_error_limit(words_data w, long flags) { int bitrate_0 = (int) ((w.bitrate_acc[0] += w.bitrate_delta[0]) >> 16); if ((flags & (Defines.MONO_FLAG | Defines.FALSE_STEREO)) != 0) { if ((flags & Defines.HYBRID_BITRATE) != 0) { int slow_log_0 = (int) ((w.c[0].slow_level + SLO) >> SLS); if (slow_log_0 - bitrate_0 > -0x100) w.c[0].error_limit = exp2s(slow_log_0 - bitrate_0 + 0x100); else w.c[0].error_limit = 0; } else w.c[0].error_limit = exp2s(bitrate_0); } else { int bitrate_1 = (int) ((w.bitrate_acc[1] += w.bitrate_delta[1]) >> 16); if ((flags & Defines.HYBRID_BITRATE) != 0) { int slow_log_0 = (int) ((w.c[0].slow_level + SLO) >> SLS); int slow_log_1 = (int) ((w.c[1].slow_level + SLO) >> SLS); if ((flags & Defines.HYBRID_BALANCE) != 0) { int balance = (slow_log_1 - slow_log_0 + bitrate_1 + 1) >> 1; if (balance > bitrate_0) { bitrate_1 = bitrate_0 * 2; bitrate_0 = 0; } else if (-balance > bitrate_0) { bitrate_0 = bitrate_0 * 2; bitrate_1 = 0; } else { bitrate_1 = bitrate_0 + balance; bitrate_0 = bitrate_0 - balance; } } if (slow_log_0 - bitrate_0 > -0x100) w.c[0].error_limit = exp2s(slow_log_0 - bitrate_0 + 0x100); else w.c[0].error_limit = 0; if (slow_log_1 - bitrate_1 > -0x100) w.c[1].error_limit = exp2s(slow_log_1 - bitrate_1 + 0x100); else w.c[1].error_limit = 0; } else { w.c[0].error_limit = exp2s(bitrate_0); w.c[1].error_limit = exp2s(bitrate_1); } } return w; } // Read the next word from the bitstream "wvbits" and return the value. This // function can be used for hybrid or lossless streams, but since an // optimized version is available for lossless this function would normally // be used for hybrid only. If a hybrid lossless stream is being read then // the "correction" offset is written at the specified pointer. A return value // of WORD_EOF indicates that the end of the bitstream was reached (all 1s) or // some other error occurred. static int get_words(long nsamples, long flags, words_data w, Bitstream bs, int[] buffer) { entropy_data[] c = w.c; int csamples; int buffer_counter = 0; int entidx = 1; if ((flags & (Defines.MONO_FLAG | Defines.FALSE_STEREO)) == 0) // if not mono { nsamples *= 2; } else { // it is mono entidx = 0; } for (csamples = 0; csamples < nsamples; ++csamples) { long ones_count, low, mid, high; if ((flags & (Defines.MONO_FLAG | Defines.FALSE_STEREO)) == 0) // if not mono { if (entidx == 1) entidx = 0; else entidx = 1; } if ((w.c[0].median[0] & ~1) == 0 && w.holding_zero == 0 && w.holding_one == 0 && (w.c[1].median[0] & ~1) == 0) { long mask; int cbits; if (w.zeros_acc > 0) { --w.zeros_acc; if (w.zeros_acc > 0) { c[entidx].slow_level -= (c[entidx].slow_level + SLO) >> SLS; buffer[buffer_counter] = 0; buffer_counter++; continue; } } else { cbits = 0; bs = BitsUtils.getbit(bs); while (cbits < 33 && bs.bitval > 0) { cbits++; bs = BitsUtils.getbit(bs); } if (cbits == 33) { break; } if (cbits < 2) w.zeros_acc = cbits; else { --cbits; for (mask = 1, w.zeros_acc = 0; cbits > 0; mask <<= 1) { bs = BitsUtils.getbit(bs); if (bs.bitval > 0) w.zeros_acc |= mask; cbits--; } w.zeros_acc |= mask; } if (w.zeros_acc > 0) { c[entidx].slow_level -= (c[entidx].slow_level + SLO) >> SLS; w.c[0].median[0] = 0; w.c[0].median[1] = 0; w.c[0].median[2] = 0; w.c[1].median[0] = 0; w.c[1].median[1] = 0; w.c[1].median[2] = 0; buffer[buffer_counter] = 0; buffer_counter++; continue; } } } if (w.holding_zero > 0) ones_count = w.holding_zero = 0; else { int next8; int uns_buf; if (bs.bc < 8) { bs.ptr++; bs.buf_index++; if (bs.ptr == bs.end) bs = BitsUtils.bs_read(bs); uns_buf = bs.buf[bs.buf_index] & 0xff; bs.sr = bs.sr | (uns_buf << bs.bc); // values in buffer must be unsigned next8 = (int) (bs.sr & 0xff); bs.bc += 8; } else next8 = (int) (bs.sr & 0xff); if (next8 == 0xff) { bs.bc -= 8; bs.sr >>= 8; ones_count = 8; bs = BitsUtils.getbit(bs); while (ones_count < (LIMIT_ONES + 1) && bs.bitval > 0) { ones_count++; bs = BitsUtils.getbit(bs); } if (ones_count == (LIMIT_ONES + 1)) { break; } if (ones_count == LIMIT_ONES) { long mask; int cbits; cbits = 0; bs = BitsUtils.getbit(bs); while (cbits < 33 && bs.bitval > 0) { cbits++; bs = BitsUtils.getbit(bs); } if (cbits == 33) { break; } if (cbits < 2) ones_count = cbits; else { for (mask = 1, ones_count = 0; --cbits > 0; mask <<= 1) { bs = BitsUtils.getbit(bs); if (bs.bitval > 0) ones_count |= mask; } ones_count |= mask; } ones_count += LIMIT_ONES; } } else { bs.bc -= (ones_count = ones_count_table[next8]) + 1; bs.sr = bs.sr >> ones_count + 1; // needs to be unsigned } if (w.holding_one > 0) { w.holding_one = ones_count & 1; ones_count = (ones_count >> 1) + 1; } else { w.holding_one = ones_count & 1; ones_count >>= 1; } w.holding_zero = (int) (~w.holding_one & 1); } if ((flags & Defines.HYBRID_FLAG) > 0 && ((flags & (Defines.MONO_FLAG | Defines.FALSE_STEREO)) > 0 || (csamples & 1) == 0)) w = update_error_limit(w, flags); if (ones_count == 0) { low = 0; high = (((c[entidx].median[0]) >> 4) + 1) - 1; c[entidx].median[0] -= (((c[entidx].median[0] + (DIV0 - 2)) / DIV0) * 2); } else { low = (((c[entidx].median[0]) >> 4) + 1); c[entidx].median[0] += ((c[entidx].median[0] + DIV0) / DIV0) * 5; if (ones_count == 1) { high = low + (((c[entidx].median[1]) >> 4) + 1) - 1; c[entidx].median[1] -= ((c[entidx].median[1] + (DIV1 - 2)) / DIV1) * 2; } else { low += (((c[entidx].median[1]) >> 4) + 1); c[entidx].median[1] += ((c[entidx].median[1] + DIV1) / DIV1) * 5; if (ones_count == 2) { high = low + (((c[entidx].median[2]) >> 4) + 1) - 1; c[entidx].median[2] -= ((c[entidx].median[2] + (DIV2 - 2)) / DIV2) * 2; } else { low += (ones_count - 2) * (((c[entidx].median[2]) >> 4) + 1); high = low + (((c[entidx].median[2]) >> 4) + 1) - 1; c[entidx].median[2] += ((c[entidx].median[2] + DIV2) / DIV2) * 5; } } } mid = (high + low + 1) >> 1; if (c[entidx].error_limit == 0) { mid = read_code(bs, high - low); mid = mid + low; } else while (high - low > c[entidx].error_limit) { bs = BitsUtils.getbit(bs); if (bs.bitval > 0) { mid = (high + (low = mid) + 1) >> 1; } else { mid = ((high = mid - 1) + low + 1) >> 1; } } bs = BitsUtils.getbit(bs); if (bs.bitval > 0) { buffer[buffer_counter] = (int) ~mid; } else { buffer[buffer_counter] = (int) mid; } buffer_counter++; if ((flags & Defines.HYBRID_BITRATE) > 0) c[entidx].slow_level = c[entidx].slow_level - ((c[entidx].slow_level + SLO) >> SLS) + mylog2(mid); } w.c = c; if ((flags & (Defines.MONO_FLAG | Defines.FALSE_STEREO)) != 0) { return csamples; } else { return (csamples / 2); } } static int count_bits(long av) { if (av < (1 << 8)) { return nbits_table[(int) av]; } else { if (av < (1 << 16)) { return nbits_table[(int) (av >>> 8)] + 8; } else { if (av < (1 << 24)) { return nbits_table[(int) (av >>> 16)] + 16; } else { return nbits_table[(int) (av >>> 24)] + 24; } } } } // Read a single unsigned value from the specified bitstream with a value // from 0 to maxcode. If there are exactly a power of two number of possible // codes then this will read a fixed number of bits; otherwise it reads the // minimum number of bits and then determines whether another bit is needed // to define the code. static long read_code(Bitstream bs, long maxcode) { int bitcount = count_bits(maxcode); long extras = (1L << bitcount) - maxcode - 1, code; if (bitcount == 0) { return ((long) 0); } code = BitsUtils.getbits(bitcount - 1, bs); code &= (1L << (bitcount - 1)) - 1; if (code >= extras) { code = (code << 1) - extras; bs = BitsUtils.getbit(bs); if (bs.bitval > 0) ++code; } return (code); } // The concept of a base 2 logarithm is used in many parts of WavPack. It is // a way of sufficiently accurately representing 32-bit signed and unsigned // values storing only 16 bits (actually fewer). It is also used in the hybrid // mode for quickly comparing the relative magnitude of large values (i.e. // division) and providing smooth exponentials using only addition. // These are not strict logarithms in that they become linear around zero and // can therefore represent both zero and negative values. They have 8 bits // of precision and in "roundtrip" conversions the total error never exceeds 1 // part in 225 except for the cases of +/-115 and +/-195 (which error by 1). // This function returns the log2 for the specified 32-bit unsigned value. // The maximum value allowed is about 0xff800000 and returns 8447. static int mylog2(long avalue) { int dbits; if ((avalue += avalue >> 9) < (1 << 8)) { dbits = nbits_table[(int) avalue]; return (dbits << 8) + log2_table[(int) (avalue << (9 - dbits)) & 0xff]; } else { if (avalue < (1L << 16)) dbits = nbits_table[(int) (avalue >> 8)] + 8; else if (avalue < (1L << 24)) dbits = nbits_table[(int) (avalue >> 16)] + 16; else dbits = nbits_table[(int) (avalue >> 24)] + 24; return (dbits << 8) + log2_table[(int) (avalue >> (dbits - 9)) & 0xff]; } } // This function returns the log2 for the specified 32-bit signed value. // All input values are valid and the return values are in the range of // +/- 8192. int log2s(int value) { if (value < 0) { return -mylog2(-value); } else { return mylog2(value); } } // This function returns the original integer represented by the supplied // logarithm (at least within the provided accuracy). The log is signed, // but since a full 32-bit value is returned this can be used for unsigned // conversions as well (i.e. the input range is -8192 to +8447). static int exp2s(int log) { long value; if (log < 0) return -exp2s(-log); value = exp2_table[log & 0xff] | 0x100; if ((log >>= 8) <= 9) return ((int) (value >> (9 - log))); else return ((int) (value << (log - 9))); } // These two functions convert internal weights (which are normally +/-1024) // to and from an 8-bit signed character version for storage in metadata. The // weights are clipped here in the case that they are outside that range. static int restore_weight(byte weight) { int result; if ((result = (int) weight << 3) > 0) result += (result + 64) >> 7; return result; } }