/*
* Copyright (c) 2009, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package com.sun.c1x.ir;
import com.sun.c1x.*;
import com.oracle.max.criutils.*;
import com.sun.c1x.util.*;
import com.sun.c1x.value.*;
import com.sun.cri.bytecode.*;
import com.sun.cri.ci.*;
/**
* The {@code ArithmeticOp} class represents arithmetic operations such as addition, subtraction, etc.
*/
public final class ArithmeticOp extends Op2 {
private FrameState stateBefore;
/**
* Creates a new arithmetic operation.
* @param opcode the bytecode opcode
* @param kind the result kind of the operation
* @param x the first input instruction
* @param y the second input instruction
* @param isStrictFP indicates this operation has strict rounding semantics
* @param stateBefore the state for instructions that may trap
*/
public ArithmeticOp(int opcode, CiKind kind, Value x, Value y, boolean isStrictFP, FrameState stateBefore) {
super(kind, opcode, x, y);
initFlag(Flag.IsStrictFP, isStrictFP);
if (stateBefore != null) {
// state before is only used in the case of a division or remainder,
// and isn't needed if the zero check is redundant
if (y.isConstant()) {
long divisor = y.asConstant().asLong();
if (divisor != 0) {
C1XMetrics.ZeroChecksRedundant++;
setFlag(Flag.NoZeroCheck);
} else {
this.stateBefore = stateBefore;
}
if (divisor != -1) {
C1XMetrics.DivideSpecialChecksRedundant++;
setFlag(Flag.NoDivSpecialCase);
}
} else {
this.stateBefore = stateBefore;
}
}
}
@Override
public FrameState stateBefore() {
return stateBefore;
}
/**
* Checks whether this instruction has strict fp semantics.
* @return {@code true} if this instruction has strict fp semantics
*/
public boolean isStrictFP() {
return checkFlag(Flag.IsStrictFP);
}
/**
* Checks whether this instruction can cause a trap. For arithmetic operations,
* only division and remainder operations can cause traps.
* @return {@code true} if this instruction can cause a trap
*/
@Override
public boolean canTrap() {
return stateBefore != null;
}
@Override
public void accept(ValueVisitor v) {
v.visitArithmeticOp(this);
}
public boolean isCommutative() {
return Bytecodes.isCommutative(opcode);
}
public boolean needsZeroCheck() {
return !checkFlag(Flag.NoZeroCheck);
}
public void eliminateZeroCheck() {
clearRuntimeCheck(Flag.NoZeroCheck);
}
@Override
public void print(LogStream out) {
out.print(Util.valueString(x())).
print(' ').
print(Bytecodes.operator(opcode)).
print(' ').
print(Util.valueString(y()));
}
}