/*
* Copyright (c) 2009, 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package com.sun.c1x.gen;
import static com.oracle.max.cri.intrinsics.MemoryBarriers.*;
import static com.sun.cri.bytecode.Bytecodes.*;
import static com.sun.cri.ci.CiCallingConvention.Type.*;
import static com.sun.cri.ci.CiValue.*;
import java.lang.reflect.*;
import java.util.*;
import com.oracle.max.asm.*;
import com.oracle.max.cri.intrinsics.*;
import com.sun.c1x.*;
import com.sun.c1x.alloc.*;
import com.sun.c1x.alloc.OperandPool.VariableFlag;
import com.sun.c1x.debug.*;
import com.oracle.max.criutils.*;
import com.sun.c1x.graph.*;
import com.sun.c1x.ir.*;
import com.sun.c1x.ir.Value.Flag;
import com.sun.c1x.lir.FrameMap.StackBlock;
import com.sun.c1x.lir.*;
import com.sun.c1x.opt.*;
import com.sun.c1x.stub.*;
import com.sun.c1x.util.*;
import com.sun.c1x.value.*;
import com.sun.c1x.value.FrameState.PhiProcedure;
import com.sun.cri.bytecode.*;
import com.sun.cri.ci.*;
import com.sun.cri.ci.CiAddress.Scale;
import com.sun.cri.ri.*;
import com.sun.cri.xir.CiXirAssembler.XirConstant;
import com.sun.cri.xir.CiXirAssembler.XirInstruction;
import com.sun.cri.xir.CiXirAssembler.XirOperand;
import com.sun.cri.xir.CiXirAssembler.XirParameter;
import com.sun.cri.xir.CiXirAssembler.XirRegister;
import com.sun.cri.xir.CiXirAssembler.XirTemp;
import com.sun.cri.xir.*;
/**
* This class traverses the HIR instructions and generates LIR instructions from them.
*/
public abstract class LIRGenerator extends ValueVisitor {
/**
* Helper class for inserting memory barriers as necessary to implement the Java Memory Model
* with respect to volatile field accesses.
*
* @see MemoryBarriers
*/
class VolatileMemoryAccess {
/**
* Inserts any necessary memory barriers before a volatile write as required by the JMM.
*/
void preVolatileWrite() {
int barriers = compilation.target.arch.requiredBarriers(JMM_PRE_VOLATILE_WRITE);
if (compilation.target.isMP && barriers != 0) {
lir.membar(barriers);
}
}
/**
* Inserts any necessary memory barriers after a volatile write as required by the JMM.
*/
void postVolatileWrite() {
int barriers = compilation.target.arch.requiredBarriers(JMM_POST_VOLATILE_WRITE);
if (compilation.target.isMP && barriers != 0) {
lir.membar(barriers);
}
}
/**
* Inserts any necessary memory barriers before a volatile read as required by the JMM.
*/
void preVolatileRead() {
int barriers = compilation.target.arch.requiredBarriers(JMM_PRE_VOLATILE_READ);
if (compilation.target.isMP && barriers != 0) {
lir.membar(barriers);
}
}
/**
* Inserts any necessary memory barriers after a volatile read as required by the JMM.
*/
void postVolatileRead() {
// Ensure field's data is loaded before any subsequent loads or stores.
int barriers = compilation.target.arch.requiredBarriers(LOAD_LOAD | LOAD_STORE);
if (compilation.target.isMP && barriers != 0) {
lir.membar(barriers);
}
}
}
/**
* Forces the result of a given instruction to be available in a given register,
* inserting move instructions if necessary.
*
* @param instruction an instruction that produces a {@linkplain Value#operand() result}
* @param register the {@linkplain CiRegister} in which the result of {@code instruction} must be available
* @return {@code register} as an operand
*/
protected CiValue force(Value instruction, CiRegister register) {
return force(instruction, register.asValue(instruction.kind));
}
/**
* Forces the result of a given instruction to be available in a given operand,
* inserting move instructions if necessary.
*
* @param instruction an instruction that produces a {@linkplain Value#operand() result}
* @param operand the operand in which the result of {@code instruction} must be available
* @return {@code operand}
*/
protected CiValue force(Value instruction, CiValue operand) {
CiValue result = makeOperand(instruction);
if (result != operand) {
assert result.kind != CiKind.Illegal;
if (!Util.archKindsEqual(result.kind, operand.kind)) {
// moves between different types need an intervening spill slot
CiValue tmp = forceToSpill(result, operand.kind, false);
lir.move(tmp, operand);
} else {
lir.move(result, operand);
}
}
return operand;
}
protected CiValue load(Value val) {
CiValue result = makeOperand(val);
if (!result.isVariableOrRegister()) {
CiVariable operand = newVariable(val.kind);
lir.move(result, operand);
return operand;
}
return result;
}
// the range of values in a lookupswitch or tableswitch statement
private static final class SwitchRange {
final int lowKey;
int highKey;
final BlockBegin sux;
SwitchRange(int lowKey, BlockBegin sux) {
this.lowKey = lowKey;
this.highKey = lowKey;
this.sux = sux;
}
}
protected final C1XCompilation compilation;
protected final IR ir;
protected final XirSupport xirSupport;
protected final RiXirGenerator xir;
protected final boolean isTwoOperand;
private BlockBegin currentBlock;
public final OperandPool operands;
private Value currentInstruction;
private Value lastInstructionPrinted; // Debugging only
private List<CiConstant> constants;
private List<CiVariable> variablesForConstants;
protected LIRList lir;
final VolatileMemoryAccess vma;
private ArrayList<DeoptimizationStub> deoptimizationStubs;
public LIRGenerator(C1XCompilation compilation) {
this.compilation = compilation;
this.ir = compilation.hir();
this.xir = compilation.compiler.xir;
this.xirSupport = new XirSupport();
this.isTwoOperand = compilation.target.arch.twoOperandMode();
this.vma = new VolatileMemoryAccess();
constants = new ArrayList<CiConstant>();
variablesForConstants = new ArrayList<CiVariable>();
this.operands = new OperandPool(compilation.target);
// mark the liveness of all instructions if it hasn't already been done by the optimizer
LivenessMarker livenessMarker = new LivenessMarker(ir);
C1XMetrics.LiveHIRInstructions += livenessMarker.liveCount();
}
public ArrayList<DeoptimizationStub> deoptimizationStubs() {
return deoptimizationStubs;
}
public static class DeoptimizationStub {
public final Label label = new Label();
public final LIRDebugInfo info;
public DeoptimizationStub(FrameState state) {
info = new LIRDebugInfo(state, null);
}
}
public final void emitGuard(Guard x) {
FrameState state = x.stateBefore();
assert state != null : "deoptimize instruction always needs a state";
if (deoptimizationStubs == null) {
deoptimizationStubs = new ArrayList<DeoptimizationStub>();
}
// (tw) TODO: Try to reuse an existing stub if possible.
// It is only allowed if there are no LIR instructions in between that can modify registers.
DeoptimizationStub stub = new DeoptimizationStub(state);
deoptimizationStubs.add(stub);
lir.branch(x.condition.negate(), stub.label, stub.info);
}
public void doBlock(BlockBegin block) {
blockDoProlog(block);
this.currentBlock = block;
for (Instruction instr = block; instr != null; instr = instr.next()) {
if (instr.isLive()) {
walkState(instr, instr.stateBefore());
doRoot(instr);
}
}
this.currentBlock = null;
blockDoEpilog(block);
}
@Override
public void visitArrayLength(ArrayLength x) {
emitArrayLength(x);
}
public CiValue emitArrayLength(ArrayLength x) {
XirArgument array = toXirArgument(x.array());
XirSnippet snippet = xir.genArrayLength(site(x), array);
emitXir(snippet, x, x.needsNullCheck() ? stateFor(x) : null, null, true);
return x.operand();
}
@Override
public void visitBase(Base x) {
// emit phi-instruction move after safepoint since this simplifies
// describing the state at the safepoint.
moveToPhi(x.stateAfter());
// all blocks with a successor must end with an unconditional jump
// to the successor even if they are consecutive
lir.jump(x.defaultSuccessor());
}
private void setOperandsForLocals(FrameState state) {
CiCallingConvention args = compilation.frameMap().incomingArguments();
int javaIndex = 0;
for (CiValue src : args.locations) {
assert src.isLegal() : "check";
CiVariable dest = newVariable(src.kind.stackKind());
lir.move(src, dest, src.kind);
// Assign new location to Local instruction for this local
Local local = (Local) state.localAt(javaIndex);
assert local.javaIndex() == javaIndex;
CiKind kind = src.kind.stackKind();
assert kind == local.kind.stackKind() : "local type check failed";
if (local.isLive()) {
setResult(local, dest);
}
javaIndex++;
if (javaIndex < state.localsSize() && state.localAt(javaIndex) == null) {
// Doubleword values are followed by a null entry, so skip that
javaIndex++;
}
}
}
@Override
public void visitResolveClass(ResolveClass i) {
LIRDebugInfo info = stateFor(i);
XirSnippet snippet = xir.genResolveClass(site(i), i.type, i.portion);
emitXir(snippet, i, info, null, true);
}
@Override
public void visitCheckCast(CheckCast x) {
XirArgument obj = toXirArgument(x.object());
XirSnippet snippet = xir.genCheckCast(site(x), obj, toXirArgument(x.targetClassInstruction), x.targetClass());
emitXir(snippet, x, stateFor(x), null, true);
}
@Override
public void visitInstanceOf(InstanceOf x) {
XirArgument obj = toXirArgument(x.object());
XirSnippet snippet = xir.genMaterializeInstanceOf(site(x), obj, toXirArgument(x.targetClassInstruction), XirArgument.forInt(1), XirArgument.forInt(0), x.targetClass());
emitXir(snippet, x, maybeStateFor(x), null, true);
}
@Override
public void visitMonitorEnter(MonitorEnter x) {
XirArgument obj = toXirArgument(x.object());
XirArgument lockAddress = toXirArgument(x.lockAddress());
XirSnippet snippet = xir.genMonitorEnter(site(x), obj, lockAddress);
emitXir(snippet, x, maybeStateFor(x), stateFor(x, x.stateAfter()), null, true, null);
}
@Override
public void visitMonitorExit(MonitorExit x) {
XirArgument obj = toXirArgument(x.object());
XirArgument lockAddress = toXirArgument(x.lockAddress());
XirSnippet snippet = xir.genMonitorExit(site(x), obj, lockAddress);
emitXir(snippet, x, maybeStateFor(x), null, true);
}
@Override
public void visitStoreIndexed(StoreIndexed x) {
XirArgument array = toXirArgument(x.array());
XirArgument index = toXirArgument(x.index());
XirArgument value = toXirArgument(x.value());
XirSnippet snippet = xir.genArrayStore(site(x), array, index, value, x.elementKind(), null);
emitXir(snippet, x, maybeStateFor(x), null, true);
}
@Override
public void visitNewInstance(NewInstance x) {
XirSnippet snippet = xir.genNewInstance(site(x), x.instanceClass());
emitXir(snippet, x, stateFor(x), null, true);
}
@Override
public void visitNewTypeArray(NewTypeArray x) {
XirArgument length = toXirArgument(x.length());
XirSnippet snippet = xir.genNewArray(site(x), length, x.elementKind(), null, null);
emitXir(snippet, x, stateFor(x), null, true);
}
@Override
public void visitNewObjectArray(NewObjectArray x) {
XirArgument length = toXirArgument(x.length());
XirSnippet snippet = xir.genNewArray(site(x), length, CiKind.Object, x.elementClass(), x.exactType());
emitXir(snippet, x, stateFor(x), null, true);
}
@Override
public void visitNewObjectArrayClone(NewObjectArrayClone x) {
XirArgument length = toXirArgument(x.length());
XirArgument referenceArray = toXirArgument(x.referenceArray());
XirSnippet snippet = xir.genNewObjectArrayClone(site(x), length, referenceArray);
emitXir(snippet, x, stateFor(x), null, true);
}
@Override
public void visitNewMultiArray(NewMultiArray x) {
XirArgument[] dims = new XirArgument[x.dimensions().length];
for (int i = 0; i < dims.length; i++) {
dims[i] = toXirArgument(x.dimensions()[i]);
}
XirSnippet snippet = xir.genNewMultiArray(site(x), dims, x.elementKind);
emitXir(snippet, x, stateFor(x), null, true);
}
@Override
public void visitConstant(Constant x) {
if (canInlineAsConstant(x)) {
//setResult(x, loadConstant(x));
} else {
CiValue res = x.operand();
if (!(res.isLegal())) {
res = x.asConstant();
}
if (res.isConstant()) {
if (isUsedForValue(x)) {
CiVariable reg = createResultVariable(x);
lir.move(res, reg);
} else {
assert x.checkFlag(Value.Flag.LiveDeopt);
x.setOperand(res);
}
} else {
setResult(x, (CiVariable) res);
}
}
}
@Override
public void visitExceptionObject(ExceptionObject x) {
assert currentBlock.isExceptionEntry() : "ExceptionObject only allowed in exception handler block";
assert currentBlock.next() == x : "ExceptionObject must be first instruction of block";
// no moves are created for phi functions at the begin of exception
// handlers, so assign operands manually here
currentBlock.stateBefore().forEachLivePhi(currentBlock, new PhiProcedure() {
public boolean doPhi(Phi phi) {
operandForPhi(phi);
return true;
}
});
XirSnippet snippet = xir.genExceptionObject(site(x));
emitXir(snippet, x, maybeStateFor(x), null, true);
}
@Override
public void visitGoto(Goto x) {
setNoResult(x);
if (currentBlock.next() instanceof OsrEntry) {
// need to free up storage used for OSR entry point
CiValue osrBuffer = currentBlock.next().operand();
callRuntime(CiRuntimeCall.OSRMigrationEnd, null, osrBuffer);
emitXir(xir.genSafepointPoll(site(x)), x, stateFor(x, x.stateAfter()), null, false);
} else if (x.isSafepointPoll()) {
emitXir(xir.genSafepointPoll(site(x)), x, stateFor(x, x.stateAfter()), null, false);
}
// emit phi-instruction moves after safepoint since this simplifies
// describing the state at the safepoint.
moveToPhi(x.stateAfter());
lir.jump(x.defaultSuccessor());
}
@Override
public void visitIfOp(IfOp i) {
Value x = i.x();
Value y = i.y();
CiKind xtype = x.kind;
CiKind ttype = i.trueValue().kind;
assert xtype.isInt() || xtype.isObject() : "cannot handle others";
assert ttype.isInt() || ttype.isObject() || ttype.isLong() : "cannot handle others";
assert ttype.equals(i.falseValue().kind) : "cannot handle others";
CiValue left = load(x);
CiValue right = null;
if (!canInlineAsConstant(y)) {
right = load(y);
} else {
right = makeOperand(y);
}
CiValue tVal = makeOperand(i.trueValue());
CiValue fVal = makeOperand(i.falseValue());
CiValue reg = createResultVariable(i);
lir.cmp(i.condition(), left, right);
lir.cmove(i.condition(), tVal, fVal, reg);
}
@Override
public void visitIntrinsic(Intrinsic x) {
Value[] vals = x.arguments();
XirSnippet snippet;
switch (x.intrinsic()) {
case java_lang_Float$intBitsToFloat:
case java_lang_Double$doubleToRawLongBits:
case java_lang_Double$longBitsToDouble:
case java_lang_Float$floatToRawIntBits: {
visitFPIntrinsics(x);
return;
}
case java_lang_System$currentTimeMillis: {
assert x.numberOfArguments() == 0 : "wrong type";
CiValue reg = callRuntimeWithResult(CiRuntimeCall.JavaTimeMillis, null, (CiValue[]) null);
CiValue result = createResultVariable(x);
lir.move(reg, result);
return;
}
case java_lang_System$nanoTime: {
assert x.numberOfArguments() == 0 : "wrong type";
CiValue reg = callRuntimeWithResult(CiRuntimeCall.JavaTimeNanos, null, (CiValue[]) null);
CiValue result = createResultVariable(x);
lir.move(reg, result);
return;
}
case java_lang_Object$init:
visitRegisterFinalizer(x);
return;
case java_lang_Math$log: // fall through
case java_lang_Math$log10: // fall through
case java_lang_Math$abs: // fall through
case java_lang_Math$sqrt: // fall through
case java_lang_Math$tan: // fall through
case java_lang_Math$sin: // fall through
case java_lang_Math$cos:
genMathIntrinsic(x);
return;
case sun_misc_Unsafe$compareAndSwapObject:
genCompareAndSwap(x, CiKind.Object);
return;
case sun_misc_Unsafe$compareAndSwapInt:
genCompareAndSwap(x, CiKind.Int);
return;
case sun_misc_Unsafe$compareAndSwapLong:
genCompareAndSwap(x, CiKind.Long);
return;
case java_lang_Thread$currentThread:
snippet = xir.genCurrentThread(site(x));
if (snippet != null) {
emitXir(snippet, x, null, null, true);
return;
}
break;
case java_lang_Object$getClass:
snippet = xir.genGetClass(site(x), toXirArgument(vals[0]));
if (snippet != null) {
emitXir(snippet, x, stateFor(x), null, true);
return;
}
break;
}
XirArgument[] args = new XirArgument[vals.length];
for (int i = 0; i < vals.length; i++) {
args[i] = toXirArgument(vals[i]);
}
snippet = xir.genIntrinsic(site(x), args, x.target());
if (snippet != null) {
emitXir(snippet, x, x.stateBefore() == null ? null : stateFor(x), null, true);
return;
}
x.setOperand(emitInvokeKnown(x.target(), x.stateBefore(), vals));
}
@Override
public void visitInvoke(Invoke x) {
RiMethod target = x.target();
LIRDebugInfo info = stateFor(x, x.stateBefore());
XirSnippet snippet = null;
// First try to intrinsify the invocation
XirArgument[] args = new XirArgument[x.arguments().length];
for (int i = 0; i < x.arguments().length; i++) {
args[i] = toXirArgument(x.arguments()[i]);
}
snippet = xir.genIntrinsic(site(x), args, x.target());
if (snippet != null) {
emitXir(snippet, x, x.stateBefore() == null ? null : stateFor(x), null, true);
return;
}
// Invocation was not intrinsified -> generate a normal call
int opcode = x.opcode();
XirArgument receiver;
switch (opcode) {
case INVOKESTATIC:
snippet = xir.genInvokeStatic(site(x), target);
break;
case INVOKESPECIAL:
receiver = toXirArgument(x.receiver());
snippet = xir.genInvokeSpecial(site(x), receiver, target);
break;
case INVOKEVIRTUAL:
receiver = toXirArgument(x.receiver());
snippet = xir.genInvokeVirtual(site(x), receiver, target);
break;
case INVOKEINTERFACE:
receiver = toXirArgument(x.receiver());
snippet = xir.genInvokeInterface(site(x), receiver, target);
break;
}
CiValue destinationAddress = null;
// emitting the template earlier can ease pressure on register allocation, but the argument loading can destroy an
// implicit calling convention between the XirSnippet and the call.
if (!C1XOptions.InvokeSnippetAfterArguments) {
destinationAddress = emitXir(snippet, x, info.copy(), x.target(), false);
}
CiValue resultOperand = resultOperandFor(x.kind);
CiCallingConvention cc = compilation.frameMap().getCallingConvention(x.signature(), JavaCall);
List<CiValue> pointerSlots = new ArrayList<CiValue>(2);
List<CiValue> argList = visitInvokeArguments(cc, x.arguments(), pointerSlots);
if (C1XOptions.InvokeSnippetAfterArguments) {
destinationAddress = emitXir(snippet, x, info.copy(), null, x.target(), false, pointerSlots);
}
// emit direct or indirect call to the destination address
if (destinationAddress instanceof CiConstant) {
// Direct call
assert ((CiConstant) destinationAddress).isDefaultValue() : "destination address should be zero";
lir.callDirect(target, resultOperand, argList, info, snippet.marks, pointerSlots);
} else {
// Indirect call
argList.add(destinationAddress);
lir.callIndirect(target, resultOperand, argList, info, snippet.marks, pointerSlots);
}
if (resultOperand.isLegal()) {
CiValue result = createResultVariable(x);
lir.move(resultOperand, result);
}
}
@Override
public void visitNativeCall(NativeCall x) {
LIRDebugInfo info = stateFor(x, x.stateBefore());
CiValue resultOperand = resultOperandFor(x.kind);
CiValue callAddress = load(x.address());
CiKind[] signature = CiUtil.signatureToKinds(x.signature, null);
CiCallingConvention cc = compilation.frameMap().getCallingConvention(signature, NativeCall);
List<CiValue> argList = visitInvokeArguments(cc, x.arguments, null);
argList.add(callAddress);
lir.callNative(x.nativeMethod.jniSymbol(), resultOperand, argList, info, null);
if (resultOperand.isLegal()) {
CiValue result = createResultVariable(x);
lir.move(resultOperand, result);
}
}
@Override
public void visitLoadRegister(LoadRegister x) {
CiValue dst = createResultVariable(x);
lir.move(x.register.asValue(x.kind), dst);
}
@Override
public void visitPause(Pause i) {
lir.pause();
}
@Override
public void visitBreakpointTrap(BreakpointTrap i) {
lir.breakpoint();
}
protected CiAddress getAddressForPointerOp(PointerOp x, CiKind kind, CiValue pointer) {
if (x.displacement() == null) {
// address is [pointer + offset]
if (x.offset().isConstant()) {
long disp = x.offset().asConstant().asLong();
if ((int) disp == disp) {
return new CiAddress(kind, pointer, (int) disp);
}
}
return new CiAddress(kind, pointer, load(x.offset()));
} else {
// address is [pointer + disp + (index * scale)]
int kindSize = compilation.target.sizeInBytes(kind);
Scale scale = Scale.fromInt(kindSize);
if (x.displacement().isConstant()) {
long disp = x.displacement().asConstant().asLong();
if (x.index().isConstant()) {
disp += x.index().asConstant().asLong() * kindSize;
if ((int) disp == disp) {
return new CiAddress(kind, pointer, (int) disp);
}
} else {
if ((int) disp == disp) {
return new CiAddress(kind, pointer, load(x.index()), scale, (int) disp);
}
}
}
CiVariable tmp = newVariable(compilation.target.wordKind);
arithmeticOpLong(Bytecodes.LADD, tmp, pointer, load(x.displacement()), null);
if (x.index().isConstant()) {
long disp = x.index().asConstant().asLong() * kindSize;
if ((int) disp == disp) {
return new CiAddress(kind, tmp, (int) disp);
}
}
return new CiAddress(kind, tmp, load(x.index()), scale, 0);
}
}
@Override
public void visitLoadPointer(LoadPointer x) {
LIRDebugInfo info = maybeStateFor(x);
CiValue pointer = load(x.pointer());
CiValue dst = createResultVariable(x);
CiAddress src = getAddressForPointerOp(x, x.dataType.kind(true), pointer);
lir.load(src, dst, info);
}
@Override
public void visitStorePointer(StorePointer x) {
LIRDebugInfo info = maybeStateFor(x);
LIRItem value = new LIRItem(x.value(), this);
CiValue pointer = load(x.pointer());
value.loadItem(x.dataType.kind(true));
CiAddress dst = getAddressForPointerOp(x, x.dataType.kind(true), pointer);
lir.store(value.result(), dst, info);
}
@Override
public void visitInfopoint(Infopoint x) {
LIRDebugInfo info = stateFor(x);
if (x.op == Infopoint.Op.SAFEPOINT_POLL) {
emitXir(xir.genSafepointPoll(site(x)), x, info, null, false);
return;
}
CiValue result = x.kind.isVoid() ? CiValue.IllegalValue : createResultVariable(x);
LIROpcode opcode;
switch (x.op) {
case HERE:
opcode = LIROpcode.Here;
break;
case INFO:
opcode = LIROpcode.Info;
break;
case UNCOMMON_TRAP:
opcode = LIROpcode.UncommonTrap;
break;
default:
throw new InternalError("Unexpected opcode: " + x.op.name());
}
lir.infopoint(opcode, result, info);
}
@Override
public void visitAlloca(Alloca x) {
CiValue result = createResultVariable(x);
assert x.size().isConstant() : "ALLOCA bytecode 'size' operand is not a constant: " + x.size();
assert x.refs().isConstant() : "ALLOCA bytecode 'refs' operand is not a constant: " + x.refs();
boolean refs = x.refs().asConstant().asInt() != 0;
StackBlock stackBlock = compilation.frameMap().reserveStackBlock(x.size().asConstant().asInt(), refs);
lir.alloca(stackBlock, result);
}
@Override
public void visitMonitorAddress(MonitorAddress x) {
CiValue result = createResultVariable(x);
lir.monitorAddress(x.monitor(), result);
}
@Override
public void visitMemoryBarrier(MemoryBarrier x) {
if (x.barriers != 0) {
lir.membar(x.barriers);
}
}
@Override
public void visitUnsafeCast(UnsafeCast i) {
assert !i.redundant : "redundant UnsafeCasts must be eliminated by the front end";
CiValue src = load(i.value());
CiValue dst = createResultVariable(i);
lir.move(src, dst);
}
/**
* For note on volatile fields, see {@link #visitStoreField(StoreField)}.
*/
@Override
public void visitLoadField(LoadField x) {
RiField field = x.field();
boolean needsPatching = x.needsPatching();
LIRDebugInfo info = null;
if (needsPatching || x.needsNullCheck()) {
info = stateFor(x, x.stateBefore());
assert info != null;
}
XirArgument receiver = toXirArgument(x.object());
XirSnippet snippet = x.isStatic() ? xir.genGetStatic(site(x), receiver, field) : xir.genGetField(site(x), receiver, field);
emitXir(snippet, x, info, null, true);
if (x.isVolatile()) {
vma.postVolatileRead();
}
}
@Override
public void visitLoadIndexed(LoadIndexed x) {
XirArgument array = toXirArgument(x.array());
XirArgument index = toXirArgument(x.index());
XirSnippet snippet = xir.genArrayLoad(site(x), array, index, x.elementKind(), null);
emitXir(snippet, x, maybeStateFor(x), null, true);
}
protected CompilerStub stubFor(CiRuntimeCall runtimeCall) {
CompilerStub stub = compilation.compiler.lookupStub(runtimeCall);
compilation.frameMap().usesStub(stub);
return stub;
}
protected CompilerStub stubFor(CompilerStub.Id compilerStub) {
CompilerStub stub = compilation.compiler.lookupStub(compilerStub);
compilation.frameMap().usesStub(stub);
return stub;
}
protected CompilerStub stubFor(XirTemplate template) {
CompilerStub stub = compilation.compiler.lookupStub(template);
compilation.frameMap().usesStub(stub);
return stub;
}
@Override
public void visitLocal(Local x) {
if (x.operand().isIllegal()) {
createResultVariable(x);
}
}
@Override
public void visitLookupSwitch(LookupSwitch x) {
CiValue tag = load(x.value());
setNoResult(x);
if (x.isSafepointPoll()) {
emitXir(xir.genSafepointPoll(site(x)), x, stateFor(x, x.stateAfter()), null, false);
}
// move values into phi locations
moveToPhi(x.stateAfter());
if (x.numberOfCases() == 0 || x.numberOfCases() < C1XOptions.SequentialSwitchLimit) {
int len = x.numberOfCases();
for (int i = 0; i < len; i++) {
lir.cmp(Condition.EQ, tag, x.keyAt(i));
lir.branch(Condition.EQ, CiKind.Int, x.suxAt(i));
}
lir.jump(x.defaultSuccessor());
} else {
visitSwitchRanges(createLookupRanges(x), tag, x.defaultSuccessor());
}
}
@Override
public void visitNullCheck(NullCheck x) {
CiValue value = makeOperand(x.object());
if (value.isVariable()) {
// null check does not create a new value, so we can re-use an already existing virtual register
x.setOperand(value);
} else {
CiValue result = createResultVariable(x);
lir.move(value, result);
value = result;
}
if (x.canTrap()) {
LIRDebugInfo info = stateFor(x);
lir.nullCheck(value, info);
}
}
@Override
public void visitOsrEntry(OsrEntry x) {
// construct our frame and model the production of incoming pointer
// to the OSR buffer.
lir.osrEntry(osrBufferPointer());
CiValue result = createResultVariable(x);
lir.move(osrBufferPointer(), result);
}
@Override
public void visitPhi(Phi i) {
Util.shouldNotReachHere();
}
@Override
public void visitReturn(Return x) {
if (x.kind.isVoid()) {
XirSnippet epilogue = xir.genEpilogue(site(x), compilation.method);
if (epilogue != null) {
emitXir(epilogue, x, stateFor(x, x.stateAfter()), compilation.method, false);
lir.returnOp(IllegalValue);
}
} else {
CiValue operand = resultOperandFor(x.kind);
CiValue result = force(x.result(), operand);
XirSnippet epilogue = xir.genEpilogue(site(x), compilation.method);
if (epilogue != null) {
emitXir(epilogue, x, stateFor(x, x.stateAfter()), compilation.method, false);
lir.returnOp(result);
}
}
setNoResult(x);
}
protected XirArgument toXirArgument(CiValue v) {
if (v == null) {
return null;
}
return XirArgument.forInternalObject(v);
}
protected XirArgument toXirArgument(Value i) {
if (i == null) {
return null;
}
return XirArgument.forInternalObject(new LIRItem(i, this));
}
private CiValue allocateOperand(XirSnippet snippet, XirOperand op) {
if (op instanceof XirParameter) {
XirParameter param = (XirParameter) op;
return allocateOperand(snippet.arguments[param.parameterIndex], op, param.canBeConstant);
} else if (op instanceof XirRegister) {
XirRegister reg = (XirRegister) op;
return reg.register;
} else if (op instanceof XirTemp) {
return newVariable(op.kind);
} else {
Util.shouldNotReachHere();
return null;
}
}
private CiValue allocateOperand(XirArgument arg, XirOperand var, boolean canBeConstant) {
if (arg.constant != null) {
return arg.constant;
} else {
assert arg.object != null;
if (arg.object instanceof CiValue) {
return (CiValue) arg.object;
}
assert arg.object instanceof LIRItem;
LIRItem item = (LIRItem) arg.object;
if (canBeConstant) {
return item.instruction.operand();
} else {
item.loadItem(var.kind);
return item.result();
}
}
}
protected CiValue emitXir(XirSnippet snippet, Instruction x, LIRDebugInfo info, RiMethod method, boolean setInstructionResult) {
return emitXir(snippet, x, info, null, method, setInstructionResult, null);
}
protected CiValue emitXir(XirSnippet snippet, Instruction instruction, LIRDebugInfo info, LIRDebugInfo infoAfter, RiMethod method, boolean setInstructionResult, List<CiValue> pointerSlots) {
if (C1XOptions.PrintXirTemplates) {
TTY.println("Emit XIR template " + snippet.template.name);
}
final CiValue[] operands = new CiValue[snippet.template.variableCount];
compilation.frameMap().reserveOutgoing(snippet.template.outgoingStackSize);
XirOperand resultOperand = snippet.template.resultOperand;
if (snippet.template.allocateResultOperand) {
CiValue outputOperand = IllegalValue;
// This snippet has a result that must be separately allocated
// Otherwise it is assumed that the result is part of the inputs
if (resultOperand.kind != CiKind.Void && resultOperand.kind != CiKind.Illegal) {
if (setInstructionResult) {
outputOperand = newVariable(instruction.kind);
} else {
outputOperand = newVariable(resultOperand.kind);
}
assert operands[resultOperand.index] == null;
}
operands[resultOperand.index] = outputOperand;
if (C1XOptions.PrintXirTemplates) {
TTY.println("Output operand: " + outputOperand);
}
}
for (XirTemp t : snippet.template.temps) {
if (t instanceof XirRegister) {
XirRegister reg = (XirRegister) t;
if (!t.reserve) {
operands[t.index] = reg.register;
}
}
}
for (XirTemplate calleeTemplate : snippet.template.calleeTemplates) {
// TODO Save these for use in X86LIRAssembler
stubFor(calleeTemplate);
}
for (XirConstant c : snippet.template.constants) {
assert operands[c.index] == null;
operands[c.index] = c.value();
}
XirOperand[] inputOperands = snippet.template.inputOperands;
XirOperand[] inputTempOperands = snippet.template.inputTempOperands;
XirOperand[] tempOperands = snippet.template.tempOperands;
CiValue[] operandArray = new CiValue[inputOperands.length + inputTempOperands.length + tempOperands.length];
int[] operandIndicesArray = new int[inputOperands.length + inputTempOperands.length + tempOperands.length];
for (int i = 0; i < inputOperands.length; i++) {
XirOperand x = inputOperands[i];
CiValue op = allocateOperand(snippet, x);
operands[x.index] = op;
operandArray[i] = op;
operandIndicesArray[i] = x.index;
if (C1XOptions.PrintXirTemplates) {
TTY.println("Input operand: " + x);
}
}
for (int i = 0; i < inputTempOperands.length; i++) {
XirOperand x = inputTempOperands[i];
CiValue op = allocateOperand(snippet, x);
CiValue newOp = newVariable(op.kind);
lir.move(op, newOp);
operands[x.index] = newOp;
operandArray[i + inputOperands.length] = newOp;
operandIndicesArray[i + inputOperands.length] = x.index;
if (C1XOptions.PrintXirTemplates) {
TTY.println("InputTemp operand: " + x);
}
}
for (int i = 0; i < tempOperands.length; i++) {
XirOperand x = tempOperands[i];
CiValue op = allocateOperand(snippet, x);
operands[x.index] = op;
operandArray[i + inputOperands.length + inputTempOperands.length] = op;
operandIndicesArray[i + inputOperands.length + inputTempOperands.length] = x.index;
if (C1XOptions.PrintXirTemplates) {
TTY.println("Temp operand: " + x);
}
}
for (CiValue operand : operands) {
assert operand != null;
}
CiValue allocatedResultOperand = operands[resultOperand.index];
if (!allocatedResultOperand.isVariableOrRegister()) {
allocatedResultOperand = IllegalValue;
}
if (setInstructionResult && allocatedResultOperand.isLegal()) {
if (instruction.operand().isIllegal()) {
setResult(instruction, (CiVariable) allocatedResultOperand);
} else {
assert instruction.operand() == allocatedResultOperand;
}
}
XirInstruction[] slowPath = snippet.template.slowPath;
if (!operands[resultOperand.index].isConstant() || snippet.template.fastPath.length != 0 || (slowPath != null && slowPath.length > 0)) {
// XIR instruction is only needed when the operand is not a constant!
lir.xir(snippet, operands, allocatedResultOperand, inputTempOperands.length, tempOperands.length,
operandArray, operandIndicesArray,
(operands[resultOperand.index] == IllegalValue) ? -1 : resultOperand.index,
info, infoAfter, method, pointerSlots);
}
return operands[resultOperand.index];
}
@Override
public void visitStoreRegister(StoreRegister x) {
CiValue reg = x.register.asValue(x.value().kind);
lir.move(makeOperand(x.value()), reg);
}
@Override
public void visitStoreField(StoreField x) {
RiField field = x.field();
boolean needsPatching = x.needsPatching();
LIRDebugInfo info = null;
if (needsPatching || x.needsNullCheck()) {
info = stateFor(x, x.stateBefore());
}
if (x.isVolatile()) {
vma.preVolatileWrite();
}
XirArgument receiver = toXirArgument(x.object());
XirArgument value = toXirArgument(x.value());
XirSnippet snippet = x.isStatic() ? xir.genPutStatic(site(x), receiver, field, value) : xir.genPutField(site(x), receiver, field, value);
emitXir(snippet, x, info, null, true);
if (x.isVolatile()) {
vma.postVolatileWrite();
}
}
@Override
public void visitTableSwitch(TableSwitch x) {
LIRItem value = new LIRItem(x.value(), this);
// Making a copy of the switch value is necessary when generating a jump table
value.setDestroysRegister();
value.loadItem();
CiValue tag = value.result();
setNoResult(x);
if (x.isSafepointPoll()) {
emitXir(xir.genSafepointPoll(site(x)), x, stateFor(x, x.stateAfter()), null, false);
}
// move values into phi locations
moveToPhi(x.stateAfter());
// TODO: tune the defaults for the controls used to determine what kind of translation to use
if (x.numberOfCases() == 0 || x.numberOfCases() <= C1XOptions.SequentialSwitchLimit) {
int loKey = x.lowKey();
int len = x.numberOfCases();
for (int i = 0; i < len; i++) {
lir.cmp(Condition.EQ, tag, i + loKey);
lir.branch(Condition.EQ, CiKind.Int, x.suxAt(i));
}
lir.jump(x.defaultSuccessor());
} else {
SwitchRange[] switchRanges = createLookupRanges(x);
int rangeDensity = x.numberOfCases() / switchRanges.length;
if (rangeDensity >= C1XOptions.RangeTestsSwitchDensity) {
visitSwitchRanges(switchRanges, tag, x.defaultSuccessor());
} else {
List<BlockBegin> nonDefaultSuccessors = x.successors().subList(0, x.numberOfCases());
BlockBegin[] targets = nonDefaultSuccessors.toArray(new BlockBegin[nonDefaultSuccessors.size()]);
lir.tableswitch(tag, x.lowKey(), x.defaultSuccessor(), targets);
}
}
}
@Override
public void visitThrow(Throw x) {
setNoResult(x);
CiValue exceptionOpr = load(x.exception());
LIRDebugInfo info = stateFor(x, x.stateAfter());
// check if the instruction has an xhandler in any of the nested scopes
boolean unwind = false;
if (x.exceptionHandlers().size() == 0) {
// this throw is not inside an xhandler
unwind = true;
} else {
// get some idea of the throw type
boolean typeIsExact = true;
RiResolvedType throwType = x.exception().exactType();
if (throwType == null) {
typeIsExact = false;
throwType = x.exception().declaredType();
}
if (throwType != null && throwType.isInstanceClass()) {
unwind = !ExceptionHandler.couldCatch(x.exceptionHandlers(), throwType, typeIsExact);
}
}
assert !currentBlock.checkBlockFlag(BlockBegin.BlockFlag.DefaultExceptionHandler) || unwind : "should be no more handlers to dispatch to";
// move exception oop into fixed register
CiCallingConvention callingConvention = compilation.frameMap().getCallingConvention(new CiKind[]{CiKind.Object}, RuntimeCall);
CiValue argumentOperand = callingConvention.locations[0];
lir.move(exceptionOpr, argumentOperand);
if (unwind) {
lir.unwindException(exceptionPcOpr(), exceptionOpr, info);
} else {
lir.throwException(exceptionPcOpr(), argumentOperand, info);
}
}
@Override
public void visitUnsafeGetObject(UnsafeGetObject x) {
CiKind kind = x.unsafeOpKind;
CiValue off = load(x.offset());
CiValue src = load(x.object());
CiValue reg = createResultVariable(x);
if (x.isVolatile()) {
vma.preVolatileRead();
}
genGetObjectUnsafe(reg, src, off, kind, x.isVolatile());
if (x.isVolatile()) {
vma.postVolatileRead();
}
}
@Override
public void visitUnsafeGetRaw(UnsafeGetRaw x) {
LIRItem idx = new LIRItem(this);
CiValue base = load(x.base());
if (x.hasIndex()) {
idx.setInstruction(x.index());
idx.loadNonconstant();
}
CiValue reg = createResultVariable(x);
int log2scale = 0;
if (x.hasIndex()) {
assert x.index().kind.isInt() : "should not find non-int index";
log2scale = x.log2Scale();
}
assert !x.hasIndex() || idx.instruction == x.index() : "should match";
CiKind dstKind = x.unsafeOpKind;
CiValue indexOp = idx.result();
CiAddress addr = null;
if (indexOp.isConstant()) {
assert log2scale == 0 : "must not have a scale";
CiConstant constantIndexOp = (CiConstant) indexOp;
addr = new CiAddress(dstKind, base, constantIndexOp.asInt());
} else {
if (compilation.target.arch.isX86()) {
addr = new CiAddress(dstKind, base, indexOp, CiAddress.Scale.fromInt(2 ^ log2scale), 0);
} else if (compilation.target.arch.isSPARC()) {
if (indexOp.isIllegal() || log2scale == 0) {
addr = new CiAddress(dstKind, base, indexOp);
} else {
CiValue tmp = newVariable(CiKind.Int);
lir.shiftLeft(indexOp, log2scale, tmp);
addr = new CiAddress(dstKind, base, tmp);
}
} else {
Util.shouldNotReachHere();
}
}
if (x.mayBeUnaligned() && (dstKind == CiKind.Long || dstKind == CiKind.Double)) {
lir.unalignedMove(addr, reg);
} else {
lir.move(addr, reg);
}
}
@Override
public void visitUnsafePrefetchRead(UnsafePrefetchRead x) {
visitUnsafePrefetch(x, false);
}
@Override
public void visitUnsafePrefetchWrite(UnsafePrefetchWrite x) {
visitUnsafePrefetch(x, true);
}
@Override
public void visitUnsafePutObject(UnsafePutObject x) {
CiKind kind = x.unsafeOpKind;
LIRItem data = new LIRItem(x.value(), this);
CiValue src = load(x.object());
data.loadItem(kind);
CiValue off = load(x.offset());
setNoResult(x);
if (x.isVolatile()) {
vma.preVolatileWrite();
}
genPutObjectUnsafe(src, off, data.result(), kind, x.isVolatile());
if (x.isVolatile()) {
vma.postVolatileWrite();
}
}
@Override
public void visitUnsafePutRaw(UnsafePutRaw x) {
int log2scale = 0;
CiKind kind = x.unsafeOpKind;
if (x.hasIndex()) {
assert x.index().kind.isInt() : "should not find non-int index";
log2scale = x.log2scale();
}
LIRItem value = new LIRItem(x.value(), this);
LIRItem idx = new LIRItem(this);
CiValue base = load(x.base());
if (x.hasIndex()) {
idx.setInstruction(x.index());
idx.loadItem();
}
value.loadItem(kind);
setNoResult(x);
CiValue indexOp = idx.result();
if (log2scale != 0) {
// temporary fix (platform dependent code without shift on Intel would be better)
indexOp = newVariable(CiKind.Int);
lir.move(idx.result(), indexOp);
lir.shiftLeft(indexOp, log2scale, indexOp);
}
CiValue addr = new CiAddress(x.unsafeOpKind, base, indexOp);
lir.move(value.result(), addr);
}
private void blockDoEpilog(BlockBegin block) {
if (C1XOptions.PrintIRWithLIR) {
TTY.println();
}
// clear out variables for local constants
constants.clear();
variablesForConstants.clear();
}
private void blockDoProlog(BlockBegin block) {
if (C1XOptions.PrintIRWithLIR) {
TTY.print(block.toString());
}
// set up the list of LIR instructions
assert block.lir() == null : "LIR list already computed for this block";
lir = new LIRList(this);
block.setLir(lir);
lir.branchDestination(block.label());
if (block == ir.startBlock) {
XirSnippet prologue = xir.genPrologue(null, compilation.method);
if (prologue != null) {
emitXir(prologue, null, null, null, false);
}
setOperandsForLocals(block.end().stateAfter());
}
}
/**
* Copies a given value into an operand that is forced to be a stack location.
*
* @param value a value to be forced onto the stack
* @param kind the kind of new operand
* @param mustStayOnStack specifies if the new operand must never be allocated to a register
* @return the operand that is guaranteed to be a stack location when it is
* initially defined a by move from {@code value}
*/
CiValue forceToSpill(CiValue value, CiKind kind, boolean mustStayOnStack) {
assert value.isLegal() : "value should not be illegal";
if (!value.isVariableOrRegister()) {
// force into a variable that must start in memory
CiValue operand = operands.newVariable(value.kind, mustStayOnStack ? VariableFlag.MustStayInMemory : VariableFlag.MustStartInMemory);
lir.move(value, operand);
return operand;
}
// create a spill location
CiValue operand = operands.newVariable(kind, mustStayOnStack ? VariableFlag.MustStayInMemory : VariableFlag.MustStartInMemory);
// move from register to spill
lir.move(value, operand);
return operand;
}
private CiVariable loadConstant(Constant x) {
return loadConstant(x.asConstant(), x.kind);
}
protected CiVariable loadConstant(CiConstant c, CiKind kind) {
// XXX: linear search might be kind of slow for big basic blocks
int index = constants.indexOf(c);
if (index != -1) {
C1XMetrics.LoadConstantIterations += index;
return variablesForConstants.get(index);
}
C1XMetrics.LoadConstantIterations += constants.size();
CiVariable result = newVariable(kind);
lir.move(c, result);
constants.add(c);
variablesForConstants.add(result);
return result;
}
/**
* Allocates a variable operand to hold the result of a given instruction.
* This can only be performed once for any given instruction.
*
* @param x an instruction that produces a result
* @return the variable assigned to hold the result produced by {@code x}
*/
protected CiVariable createResultVariable(Value x) {
CiVariable operand = newVariable(x.kind);
setResult(x, operand);
return operand;
}
private void visitFPIntrinsics(Intrinsic x) {
assert x.numberOfArguments() == 1 : "wrong type";
CiValue reg = createResultVariable(x);
CiValue value = load(x.argumentAt(0));
CiValue tmp = forceToSpill(value, x.kind, false);
lir.move(tmp, reg);
}
private void visitRegisterFinalizer(Intrinsic x) {
assert x.numberOfArguments() == 1 : "wrong type";
CiValue receiver = load(x.argumentAt(0));
LIRDebugInfo info = stateFor(x, x.stateBefore());
callRuntime(CiRuntimeCall.RegisterFinalizer, info, receiver);
setNoResult(x);
}
private void visitSwitchRanges(SwitchRange[] x, CiValue value, BlockBegin defaultSux) {
for (int i = 0; i < x.length; i++) {
SwitchRange oneRange = x[i];
int lowKey = oneRange.lowKey;
int highKey = oneRange.highKey;
BlockBegin dest = oneRange.sux;
if (lowKey == highKey) {
lir.cmp(Condition.EQ, value, lowKey);
lir.branch(Condition.EQ, CiKind.Int, dest);
} else if (highKey - lowKey == 1) {
lir.cmp(Condition.EQ, value, lowKey);
lir.branch(Condition.EQ, CiKind.Int, dest);
lir.cmp(Condition.EQ, value, highKey);
lir.branch(Condition.EQ, CiKind.Int, dest);
} else {
Label l = new Label();
lir.cmp(Condition.LT, value, lowKey);
lir.branch(Condition.LT, l);
lir.cmp(Condition.LE, value, highKey);
lir.branch(Condition.LE, CiKind.Int, dest);
lir.branchDestination(l);
}
}
lir.jump(defaultSux);
}
private void visitUnsafePrefetch(UnsafePrefetch x, boolean isStore) {
LIRItem src = new LIRItem(x.object(), this);
LIRItem off = new LIRItem(x.offset(), this);
src.loadItem();
if (!(off.result().isConstant() && canInlineAsConstant(x.offset()))) {
off.loadItem();
}
setNoResult(x);
CiAddress addr = genAddress(src.result(), off.result(), 0, 0, CiKind.Byte);
lir.prefetch(addr, isStore);
}
protected void arithmeticOpFpu(int code, CiValue result, CiValue left, CiValue right, CiValue tmp) {
CiValue leftOp = left;
if (isTwoOperand && leftOp != result) {
assert right != result : "malformed";
lir.move(leftOp, result);
leftOp = result;
}
switch (code) {
case DADD:
case FADD:
lir.add(leftOp, right, result);
break;
case FMUL:
case DMUL:
lir.mul(leftOp, right, result);
break;
case DSUB:
case FSUB:
lir.sub(leftOp, right, result);
break;
case FDIV:
case DDIV:
lir.div(leftOp, right, result, null);
break;
default:
Util.shouldNotReachHere();
}
}
protected void arithmeticOpInt(int code, CiValue result, CiValue left, CiValue right, CiValue tmp) {
CiValue leftOp = left;
if (isTwoOperand && leftOp != result) {
assert right != result : "malformed";
lir.move(leftOp, result);
leftOp = result;
}
switch (code) {
case IADD:
lir.add(leftOp, right, result);
break;
case IMUL:
boolean didStrengthReduce = false;
if (right.isConstant()) {
CiConstant rightConstant = (CiConstant) right;
int c = rightConstant.asInt();
if (CiUtil.isPowerOf2(c)) {
// do not need tmp here
lir.shiftLeft(leftOp, CiUtil.log2(c), result);
didStrengthReduce = true;
} else {
didStrengthReduce = strengthReduceMultiply(leftOp, c, result, tmp);
}
}
// we couldn't strength reduce so just emit the multiply
if (!didStrengthReduce) {
lir.mul(leftOp, right, result);
}
break;
case ISUB:
lir.sub(leftOp, right, result);
break;
default:
// idiv and irem are handled elsewhere
Util.shouldNotReachHere();
}
}
protected void arithmeticOpLong(int code, CiValue result, CiValue left, CiValue right, LIRDebugInfo info) {
CiValue leftOp = left;
if (isTwoOperand && leftOp != result) {
assert right != result : "malformed";
lir.move(leftOp, result);
leftOp = result;
}
switch (code) {
case LADD:
lir.add(leftOp, right, result);
break;
case LMUL:
lir.mul(leftOp, right, result);
break;
case LSUB:
lir.sub(leftOp, right, result);
break;
default:
// ldiv and lrem are handled elsewhere
Util.shouldNotReachHere();
}
}
protected final CiValue callRuntime(CiRuntimeCall runtimeCall, LIRDebugInfo info, CiValue... args) {
// get a result register
CiKind result = runtimeCall.resultKind;
CiKind[] arguments = runtimeCall.arguments;
CiValue physReg = result.isVoid() ? IllegalValue : resultOperandFor(result);
List<CiValue> argumentList;
if (arguments.length > 0) {
// move the arguments into the correct location
CiCallingConvention cc = compilation.frameMap().getCallingConvention(arguments, RuntimeCall);
assert cc.locations.length == args.length : "argument count mismatch";
for (int i = 0; i < args.length; i++) {
CiValue arg = args[i];
CiValue loc = cc.locations[i];
if (loc.isRegister()) {
lir.move(arg, loc);
} else {
assert loc.isStackSlot();
CiStackSlot slot = (CiStackSlot) loc;
if (slot.kind == CiKind.Long || slot.kind == CiKind.Double) {
lir.unalignedMove(arg, slot);
} else {
lir.move(arg, slot);
}
}
}
argumentList = Arrays.asList(cc.locations);
} else {
// no arguments
assert args == null || args.length == 0;
argumentList = Util.uncheckedCast(Collections.emptyList());
}
lir.callRuntime(runtimeCall, physReg, argumentList, info);
return physReg;
}
protected final CiVariable callRuntimeWithResult(CiRuntimeCall runtimeCall, LIRDebugInfo info, CiValue... args) {
CiVariable result = newVariable(runtimeCall.resultKind);
CiValue location = callRuntime(runtimeCall, info, args);
lir.move(location, result);
return result;
}
SwitchRange[] createLookupRanges(LookupSwitch x) {
// we expect the keys to be sorted by increasing value
List<SwitchRange> res = new ArrayList<SwitchRange>(x.numberOfCases());
int len = x.numberOfCases();
if (len > 0) {
BlockBegin defaultSux = x.defaultSuccessor();
int key = x.keyAt(0);
BlockBegin sux = x.suxAt(0);
SwitchRange range = new SwitchRange(key, sux);
for (int i = 1; i < len; i++) {
int newKey = x.keyAt(i);
BlockBegin newSux = x.suxAt(i);
if (key + 1 == newKey && sux == newSux) {
// still in same range
range.highKey = newKey;
} else {
// skip tests which explicitly dispatch to the default
if (range.sux != defaultSux) {
res.add(range);
}
range = new SwitchRange(newKey, newSux);
}
key = newKey;
sux = newSux;
}
if (res.size() == 0 || res.get(res.size() - 1) != range) {
res.add(range);
}
}
return res.toArray(new SwitchRange[res.size()]);
}
SwitchRange[] createLookupRanges(TableSwitch x) {
// XXX: try to merge this with the code for LookupSwitch
List<SwitchRange> res = new ArrayList<SwitchRange>(x.numberOfCases());
int len = x.numberOfCases();
if (len > 0) {
BlockBegin sux = x.suxAt(0);
int key = x.lowKey();
BlockBegin defaultSux = x.defaultSuccessor();
SwitchRange range = new SwitchRange(key, sux);
for (int i = 0; i < len; i++, key++) {
BlockBegin newSux = x.suxAt(i);
if (sux == newSux) {
// still in same range
range.highKey = key;
} else {
// skip tests which explicitly dispatch to the default
if (sux != defaultSux) {
res.add(range);
}
range = new SwitchRange(key, newSux);
}
sux = newSux;
}
if (res.size() == 0 || res.get(res.size() - 1) != range) {
res.add(range);
}
}
return res.toArray(new SwitchRange[res.size()]);
}
void doRoot(Instruction instr) {
currentInstruction = instr;
assert instr.isLive() : "use only with roots";
assert !instr.hasSubst() : "shouldn't have missed substitution";
if (C1XOptions.TraceLIRVisit) {
TTY.println("Visiting " + instr);
}
instr.accept(this);
if (C1XOptions.TraceLIRVisit) {
TTY.println("Operand for " + instr + " = " + instr.operand());
}
assert (instr.operand().isLegal()) || !isUsedForValue(instr) || instr.isConstant() || instr instanceof UnsafeCast : "operand was not set for live instruction";
}
private boolean isUsedForValue(Instruction instr) {
return instr.checkFlag(Value.Flag.LiveValue);
}
protected void logicOp(int code, CiValue resultOp, CiValue leftOp, CiValue rightOp) {
if (isTwoOperand && leftOp != resultOp) {
assert rightOp != resultOp : "malformed";
lir.move(leftOp, resultOp);
leftOp = resultOp;
}
switch (code) {
case IAND:
case LAND:
lir.logicalAnd(leftOp, rightOp, resultOp);
break;
case IOR:
case LOR:
lir.logicalOr(leftOp, rightOp, resultOp);
break;
case IXOR:
case LXOR:
lir.logicalXor(leftOp, rightOp, resultOp);
break;
default:
Util.shouldNotReachHere();
}
}
void moveToPhi(PhiResolver resolver, Value curVal, Value suxVal) {
// move current value to referenced phi function
if (suxVal instanceof Phi) {
Phi phi = (Phi) suxVal;
// curVal can be null without phi being null in conjunction with inlining
if (phi.isLive() && curVal != null && curVal != phi) {
assert curVal.isLive() : "value not live: " + curVal + ", suxVal=" + suxVal;
assert !phi.isIllegal() : "illegal phi cannot be marked as live";
if (curVal instanceof Phi) {
operandForPhi((Phi) curVal);
}
CiValue operand = curVal.operand();
if (operand.isIllegal()) {
assert curVal instanceof Constant || curVal instanceof Local : "these can be produced lazily";
operand = operandForInstruction(curVal);
}
resolver.move(operand, operandForPhi(phi));
}
}
}
protected void moveToPhi(FrameState curState) {
// Moves all stack values into their phi position
BlockBegin bb = currentBlock;
if (bb.numberOfSux() == 1) {
BlockBegin sux = bb.suxAt(0);
assert sux.numberOfPreds() > 0 : "invalid CFG";
// a block with only one predecessor never has phi functions
if (sux.numberOfPreds() > 1) {
PhiResolver resolver = new PhiResolver(this);
FrameState suxState = sux.stateBefore();
for (int index = 0; index < suxState.stackSize(); index++) {
moveToPhi(resolver, curState.stackAt(index), suxState.stackAt(index));
}
// walk up the inlined scopes until locals match
while (curState.scope() != suxState.scope()) {
curState = curState.callerState();
assert curState != null : "scopes don't match up";
}
for (int index = 0; index < suxState.localsSize(); index++) {
moveToPhi(resolver, curState.localAt(index), suxState.localAt(index));
}
assert curState.scope().callerState == suxState.scope().callerState : "caller states must be equal";
resolver.dispose();
}
}
}
/**
* Creates a new {@linkplain CiVariable variable}.
*
* @param kind the kind of the variable
* @return a new variable
*/
public CiVariable newVariable(CiKind kind) {
return operands.newVariable(kind);
}
CiValue operandForInstruction(Value x) {
CiValue operand = x.operand();
if (operand.isIllegal()) {
if (x instanceof Constant) {
x.setOperand(x.asConstant());
} else {
assert x instanceof Phi || x instanceof Local : "only for Phi and Local";
// allocate a variable for this local or phi
createResultVariable(x);
}
}
return x.operand();
}
private CiValue operandForPhi(Phi phi) {
if (phi.operand().isIllegal()) {
// allocate a variable for this phi
CiVariable operand = newVariable(phi.kind);
setResult(phi, operand);
}
return phi.operand();
}
protected void postGCWriteBarrier(CiValue addr, CiValue newVal) {
XirSnippet writeBarrier = xir.genWriteBarrier(toXirArgument(addr));
if (writeBarrier != null) {
emitXir(writeBarrier, null, null, null, false);
}
}
protected void preGCWriteBarrier(CiValue addrOpr, boolean patch, LIRDebugInfo info) {
}
protected void setNoResult(Instruction x) {
assert !isUsedForValue(x) : "can't have use";
x.clearOperand();
}
protected CiValue setResult(Value x, CiVariable operand) {
x.setOperand(operand);
if (C1XOptions.DetailedAsserts) {
operands.recordResult(operand, x);
}
return operand;
}
protected void shiftOp(int code, CiValue resultOp, CiValue value, CiValue count, CiValue tmp) {
if (isTwoOperand && value != resultOp) {
assert count != resultOp : "malformed";
lir.move(value, resultOp);
value = resultOp;
}
assert count.isConstant() || count.isVariableOrRegister();
switch (code) {
case ISHL:
case LSHL:
lir.shiftLeft(value, count, resultOp, tmp);
break;
case ISHR:
case LSHR:
lir.shiftRight(value, count, resultOp, tmp);
break;
case IUSHR:
case LUSHR:
lir.unsignedShiftRight(value, count, resultOp, tmp);
break;
default:
Util.shouldNotReachHere();
}
}
protected void walkState(Instruction x, FrameState state) {
if (state == null) {
return;
}
for (int index = 0; index < state.stackSize(); index++) {
walkStateValue(state.stackAt(index));
}
FrameState s = state;
int bci = x.bci();
while (s != null) {
IRScope scope = s.scope();
if (bci == Instruction.SYNCHRONIZATION_ENTRY_BCI) {
assert x instanceof ExceptionObject ||
x instanceof Throw ||
x instanceof MonitorEnter ||
x instanceof MonitorExit;
}
for (int index = 0; index < s.localsSize(); index++) {
final Value value = s.localAt(index);
if (value != null) {
if (!value.isIllegal()) {
walkStateValue(value);
}
}
}
bci = scope.callerBCI();
s = s.callerState();
}
}
private void walkStateValue(Value value) {
if (value != null) {
assert !value.hasSubst() : "missed substitution";
assert value.isLive() : "value must be marked live in frame state";
if (value instanceof Phi && !value.isIllegal()) {
// phi's are special
operandForPhi((Phi) value);
} else if (value.operand().isIllegal() && !(value instanceof UnsafeCast)) {
// instruction doesn't have an operand yet
CiValue operand = makeOperand(value);
assert operand.isLegal() : "must be evaluated now";
}
}
}
protected LIRDebugInfo maybeStateFor(Instruction x) {
FrameState stateBefore = x.stateBefore();
if (stateBefore == null) {
return null;
}
return stateFor(x, stateBefore);
}
protected LIRDebugInfo stateFor(Instruction x) {
assert x.stateBefore() != null : "must have state before instruction for " + x;
return stateFor(x, x.stateBefore());
}
protected LIRDebugInfo stateFor(Instruction x, FrameState state) {
if (compilation.placeholderState != null) {
state = compilation.placeholderState;
}
return new LIRDebugInfo(state, x.exceptionHandlers());
}
List<CiValue> visitInvokeArguments(CiCallingConvention cc, Value[] args, List<CiValue> pointerSlots) {
// for each argument, load it into the correct location
List<CiValue> argList = new ArrayList<CiValue>(args.length);
int j = 0;
for (Value arg : args) {
if (arg != null) {
CiValue operand = cc.locations[j++];
if (operand.isRegister()) {
force(arg, operand);
} else {
LIRItem param = new LIRItem(arg, this);
assert operand.isStackSlot();
CiStackSlot slot = (CiStackSlot) operand;
assert !slot.inCallerFrame();
param.loadForStore(slot.kind);
if (slot.kind == CiKind.Long || slot.kind == CiKind.Double) {
lir.unalignedMove(param.result(), slot);
} else {
lir.move(param.result(), slot);
}
if (arg.kind == CiKind.Object && pointerSlots != null) {
// This slot must be marked explicitly in the pointer map.
pointerSlots.add(slot);
}
}
argList.add(operand);
}
}
return argList;
}
/**
* Ensures that an operand has been {@linkplain Value#setOperand(CiValue) initialized}
* for storing the result of an instruction.
*
* @param instruction an instruction that produces a result value
*/
protected CiValue makeOperand(Value instruction) {
assert instruction.isLive();
CiValue operand = instruction.operand();
if (operand.isIllegal()) {
if (instruction instanceof Phi) {
// a phi may not have an operand yet if it is for an exception block
operand = operandForPhi((Phi) instruction);
} else if (instruction instanceof Constant) {
operand = operandForInstruction(instruction);
}
}
// the value must be a constant or have a valid operand
assert operand.isLegal() : "this root has not been visited yet";
return operand;
}
/**
* Gets the ABI specific operand used to return a value of a given kind from a method.
*
* @param kind the kind of value being returned
* @return the operand representing the ABI defined location used return a value of kind {@code kind}
*/
protected CiValue resultOperandFor(CiKind kind) {
if (kind == CiKind.Void) {
return IllegalValue;
}
CiRegister returnRegister = compilation.registerConfig.getReturnRegister(kind);
return returnRegister.asValue(kind);
}
protected XirSupport site(Value x) {
return xirSupport.site(x);
}
public void maybePrintCurrentInstruction() {
if (currentInstruction != null && lastInstructionPrinted != currentInstruction) {
lastInstructionPrinted = currentInstruction;
InstructionPrinter ip = new InstructionPrinter(TTY.out());
ip.printInstructionListing(currentInstruction);
}
}
protected abstract boolean canInlineAsConstant(Value i);
protected abstract boolean canStoreAsConstant(Value i, CiKind kind);
protected abstract CiValue exceptionPcOpr();
protected abstract CiValue osrBufferPointer();
protected abstract boolean strengthReduceMultiply(CiValue left, int constant, CiValue result, CiValue tmp);
protected abstract CiAddress genAddress(CiValue base, CiValue index, int shift, int disp, CiKind kind);
protected abstract void genCmpMemInt(Condition condition, CiValue base, int disp, int c, LIRDebugInfo info);
protected abstract void genCmpRegMem(Condition condition, CiValue reg, CiValue base, int disp, CiKind kind, LIRDebugInfo info);
protected abstract void genGetObjectUnsafe(CiValue dest, CiValue src, CiValue offset, CiKind kind, boolean isVolatile);
protected abstract void genPutObjectUnsafe(CiValue src, CiValue offset, CiValue data, CiKind kind, boolean isVolatile);
protected abstract void genCompareAndSwap(Intrinsic x, CiKind kind);
protected abstract void genMathIntrinsic(Intrinsic x);
/**
* Implements site-specific information for the XIR interface.
*/
static class XirSupport implements XirSite {
Value current;
XirSupport() {
}
public CiCodePos getCodePos() {
// TODO: get the code position of the current instruction if possible
return null;
}
public boolean isNonNull(XirArgument argument) {
if (argument.constant == null && argument.object instanceof LIRItem) {
// check the flag on the original value
return ((LIRItem) argument.object).instruction.isNonNull();
}
return false;
}
public boolean requiresNullCheck() {
return current == null || current.needsNullCheck();
}
public boolean requiresBoundsCheck() {
return current == null || !current.checkFlag(Value.Flag.NoBoundsCheck);
}
public boolean requiresReadBarrier() {
return current == null || !current.checkFlag(Value.Flag.NoReadBarrier);
}
public boolean requiresWriteBarrier() {
return current == null || !current.checkFlag(Value.Flag.NoWriteBarrier);
}
public boolean requiresArrayStoreCheck() {
return current == null || !current.checkFlag(Value.Flag.NoStoreCheck);
}
public RiType getApproximateType(XirArgument argument) {
return current == null ? null : current.declaredType();
}
public RiType getExactType(XirArgument argument) {
return current == null ? null : current.exactType();
}
XirSupport site(Value v) {
current = v;
return this;
}
@Override
public String toString() {
return "XirSupport<" + current + ">";
}
}
public void arrayCopy(RiType type, ArrayCopy arrayCopy, XirSnippet snippet) {
emitXir(snippet, arrayCopy, stateFor(arrayCopy), null, false);
}
@Override
public void visitArrayCopy(ArrayCopy arrayCopy) {
Value src = arrayCopy.src();
Value dest = arrayCopy.dest();
Value srcPos = arrayCopy.srcPos();
Value destPos = arrayCopy.destPos();
Value length = arrayCopy.length();
RiResolvedType srcType = src.declaredType();
RiResolvedType destType = dest.declaredType();
if ((srcType != null && srcType.isArrayClass()) || (destType != null && destType.isArrayClass())) {
RiType type = (srcType == null) ? destType : srcType;
if ((srcType == null || destType == null || srcType.kind(true) != destType.kind(true)) && type.kind(true) != CiKind.Object) {
TypeEqualityCheck typeCheck = new TypeEqualityCheck(src, dest, arrayCopy.stateBefore(), Condition.EQ);
visitTypeEqualityCheck(typeCheck);
}
boolean inputsSame = src == dest;
boolean inputsDifferent = !inputsSame && (src.checkFlag(Flag.ResultIsUnique) && dest.checkFlag(Flag.ResultIsUnique));
boolean needsStoreCheck = type.componentType().kind(true) == CiKind.Object && destType != srcType;
if (!needsStoreCheck) {
arrayCopy.setFlag(Flag.NoStoreCheck);
}
XirSnippet snippet = xir.genArrayCopy(site(arrayCopy), toXirArgument(src), toXirArgument(srcPos), toXirArgument(dest), toXirArgument(destPos), toXirArgument(length), type.componentType(), inputsSame, inputsDifferent);
arrayCopy(type, arrayCopy, snippet);
return;
}
arrayCopySlow(arrayCopy);
}
private void arrayCopySlow(ArrayCopy arrayCopy) {
emitInvokeKnown(arrayCopy.arrayCopyMethod, arrayCopy.stateBefore(), arrayCopy.src(), arrayCopy.srcPos(), arrayCopy.dest(), arrayCopy.destPos(), arrayCopy.length());
}
private CiValue emitInvokeKnown(RiResolvedMethod method, FrameState stateBefore, Value... args) {
boolean isStatic = Modifier.isStatic(method.accessFlags());
Invoke invoke = new Invoke(isStatic ? Bytecodes.INVOKESTATIC : Bytecodes.INVOKESPECIAL, method.signature().returnKind(true), args, isStatic, method, null, stateBefore);
visitInvoke(invoke);
return invoke.operand();
}
@Override
public void visitTypeEqualityCheck(TypeEqualityCheck typeEqualityCheck) {
Value x = typeEqualityCheck.left();
Value y = typeEqualityCheck.right();
CiValue leftValue = emitXir(xir.genGetClass(site(typeEqualityCheck), toXirArgument(x)), typeEqualityCheck, stateFor(typeEqualityCheck), null, false);
CiValue rightValue = emitXir(xir.genGetClass(site(typeEqualityCheck), toXirArgument(y)), typeEqualityCheck, stateFor(typeEqualityCheck), null, false);
lir.cmp(typeEqualityCheck.condition.negate(), leftValue, rightValue);
emitGuard(typeEqualityCheck);
}
}