/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.kafka.clients.consumer; import org.apache.kafka.clients.consumer.internals.AbstractPartitionAssignor; import org.apache.kafka.common.TopicPartition; import org.apache.kafka.common.utils.CircularIterator; import org.apache.kafka.common.utils.Utils; import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.SortedSet; import java.util.TreeSet; /** * The round robin assignor lays out all the available partitions and all the available consumers. It * then proceeds to do a round robin assignment from partition to consumer. If the subscriptions of all consumer * instances are identical, then the partitions will be uniformly distributed. (i.e., the partition ownership counts * will be within a delta of exactly one across all consumers.) * * For example, suppose there are two consumers C0 and C1, two topics t0 and t1, and each topic has 3 partitions, * resulting in partitions t0p0, t0p1, t0p2, t1p0, t1p1, and t1p2. * * The assignment will be: * C0: [t0p0, t0p2, t1p1] * C1: [t0p1, t1p0, t1p2] * * When subscriptions differ across consumer instances, the assignment process still considers each * consumer instance in round robin fashion but skips over an instance if it is not subscribed to * the topic. Unlike the case when subscriptions are identical, this can result in imbalanced * assignments. For example, we have three consumers C0, C1, C2, and three topics t0, t1, t2, * with 1, 2, and 3 partitions, respectively. Therefore, the partitions are t0p0, t1p0, t1p1, t2p0, * t2p1, t2p2. C0 is subscribed to t0; C1 is subscribed to t0, t1; and C2 is subscribed to t0, t1, t2. * * Tha assignment will be: * C0: [t0p0] * C1: [t1p0] * C2: [t1p1, t2p0, t2p1, t2p2] */ public class RoundRobinAssignor extends AbstractPartitionAssignor { @Override public Map<String, List<TopicPartition>> assign(Map<String, Integer> partitionsPerTopic, Map<String, List<String>> subscriptions) { Map<String, List<TopicPartition>> assignment = new HashMap<>(); for (String memberId : subscriptions.keySet()) assignment.put(memberId, new ArrayList<TopicPartition>()); CircularIterator<String> assigner = new CircularIterator<>(Utils.sorted(subscriptions.keySet())); for (TopicPartition partition : allPartitionsSorted(partitionsPerTopic, subscriptions)) { final String topic = partition.topic(); while (!subscriptions.get(assigner.peek()).contains(topic)) assigner.next(); assignment.get(assigner.next()).add(partition); } return assignment; } public List<TopicPartition> allPartitionsSorted(Map<String, Integer> partitionsPerTopic, Map<String, List<String>> subscriptions) { SortedSet<String> topics = new TreeSet<>(); for (List<String> subscription : subscriptions.values()) topics.addAll(subscription); List<TopicPartition> allPartitions = new ArrayList<>(); for (String topic : topics) { Integer numPartitionsForTopic = partitionsPerTopic.get(topic); if (numPartitionsForTopic != null) allPartitions.addAll(AbstractPartitionAssignor.partitions(topic, numPartitionsForTopic)); } return allPartitions; } @Override public String name() { return "roundrobin"; } }